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Abelian maps: a review

Let G = (G, -) be a (nonabelian) group.
Let L/K be a Galois extension, Galois group G.

An abelian map on G is an endomorphism ¢ : G — G such that
¥(G) < Gis abelian.

Denote by Ab(G) the set of all abelian maps on G.

In 2020 we showed how v € Ab(G) could be used to put a Hopf-Galois
structure on L/K, as well as construct a (bi-skew) brace.
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The Hopf-Galois structure: a review

Let ¢ € Ab(G).

For g € G define ng : G — G by ng[h] = gi(g~ 1) hy(g).

Note ng[1g] = 9.

Then N := {ng : g € G} is a regular, G-stable subgroup of Perm(G).
(“G-stable” = “normalized by conjugation by A\(G) < Perm(G)”.)
Explicitly, for k, g € G we have “ng = my5,(-1)k-14(g)-

So, by Greither-Pareigis, L[N]¢ is a Hopf algebra which puts a
Hopf-Galois structure on L/K.

The HGS structure is said to be of type N.

Also, ¢1,1» € Ab(G) give the same Hopf-Galois structure if and only if
»1(9)2(97") € Z(G) forall g € G.
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The commuting Hopf-Galois structure: a review

Recall that if N is a regular, G-stable subgroup, then so is

N’ := Centperm(g)(N) = {7 € Perm(G) : 7y = nr for all n € N}.

For ¢ € Ab(G) we have N = {ng : g € G}, 1g[h] = gv(9~") hi(g)-
Easy to verify that N’ = {7y : g € G} with

mglhl = hp(h~")gy(h).
Thus, v gives us two related Hopf-Galois structures (G nonabelian).

“Related”: the actions of H := L[N]¢ and H' := L[N']% on L/K
commute with each other [Truman, 2018].
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The brace: a review

Recall a skew left brace (hereafter, brace) is a triple (B, -, o) where
(B,-) and (B, o) are groups (dot group and circle group respectively)
and, forall x,y,z € B,

1

xo(y-z)=(xoy) - x'"-(xo02z), x-x'=1p.

Turnsoutx-1g=xo1g=xforall x € B.
We will frequently suppress the dot and write xy = x - y.

Proposition (K, 2020)

Let € Ab(G), and define g o h = ngh] = gu(g~")mi(g).
Then (G, -,0) is a brace.

Caveat. The “abelian map to brace” relationship here is different from
the usual “regular, G-stable subgroup” to “brace” relationship given by
Byott and Vendramin.
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Opposite braces: a review

Let (B, -, o) be a brace.
Then (B, ,0) is also a brace, where a-' b= b- a.

We call this is opposite brace to the one above. (Developed
independently by K-Truman and Rump.)

Fact. [K-Truman, 2019] If N < Perm(G) is regular and G-stable, and
N’ = Centperm(g) N, then their corresponding braces are opposite.
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Yang-Baxter equation: a review

Braces give set-theoretic solutions to the Yang-Baxter equation.

A set-theoretic solution to the YBE is a set B and a function
R : B2 — B? such that

(R xid)(id x R)(R x id) = (id x R)(R x id)(id x R).
If (B,-,0)is abrace and ais the inverse to a € (G, o) then

R(x,y) = (x"(xoy),xT(xoy)oxoy), x,y € B

is the corresponding solution.
By considering the opposite brace, we get the additional solution

R(x,y)=((xoy)x ", (xoy)x~Toxoy), x,y €B,

which is inverse to the one above (in that 'R = RR’ = id).
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Equivalent solutions

Suppose (Bj, -1,01) and (B, -2, 02) are isomorphic braces, i.e., there is
a bijection ¢ : By — B> which which preserve the dot and circle
operations.

Let Ry, R be the corresponding YBE solutions.

Then Ry # Rs in general, however we will say that these two solutions
are equivalent.

Short rationale: By, B> each induce vector space solutions to the YBE
r: VeV — V® Vwith analogous twisting property, where

dim V = |B;| = |Bz|. Equivalent set-theoretic braces give the same
vector space solution up to a choice of basis.

Fact. If (G, -, o) is a brace, the isomorphic braces with the same circle
group (G, o) are of the form (G, -, o) where ¢ € Aut(G, o) and
g h=9le7(9) v (M)
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The solutions of interest to us: a review

Example (abelian map case)

For ¢ € Ab(G) we get the brace described previously, which leads to
the solution

Rlg. h) = (v(g~ (), u(hg )" w(g)gu(g ™ )(gh™))
Using the opposite brace, we get the second solution

R'(g,h) = (9¥(g~ Ngv(9)g~ ", v(hgy(h™)).

We have seen that v, 1» give the same brace (and hence the same
solution) if and only if 1(g)w2(g~") € Z(G) for all g € G.

Note that if 1) € Ab(G), then o~ € Ab(G) for all ¢ € Aut(G), and
their braces are necessarily isomorphic.
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The brace: a review

Recall that a brace (B, -, o) is a bi-skew brace if (B, o, -) is also a brace.

In other words, (B, -, o) is a bi-skew brace if any only if

ao(b-c)=(aob)-a ' (aocc)
a-(boc)=(a-b)oao(a-c).

Easy to show: for ¢ € Ab(G) the resulting brace (G, -, o) is bi-skew.

In fact, (G, o, -) is the Byott-Vendramin brace corresponding to the
regular, G-stable subgroup N = {ng : g € G}.
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An observation from 2020

If v € Ab(G) = Ab(G, -), then
¥(g o h) =v(9)y(h),
i.e., ¥ € Ab(G, o).
Thus we could apply the brace construction starting with (G, o): if
g*xh=gov(g)ohoy(g)
then (G, o, ) is a bi-skew brace.
Repeating this idea would, in theory, create a “bi-skew brace chain”.

However, it turns out (G, -, x) is also a bi-skew brace.

So perhaps more is going on here.
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Brace blocks

This is our new construction for 2021.

Definition

A brace block is a set B together with a family of binary operations
{on : n € Z2%} such that (B, om, o) is a brace for all m,n > 0.

Note that each brace in a brace block is necessarily bi-skew.

However, it is useful to simply regard them as (skew left) braces.
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First examples

Example (Trivial brace block)

Let (G, ) be a group, and let (g o, h) = gh for all n. Then each brace is
the trivial brace on G (i.e., the two operations coincide).

Example (Almost trivial brace block)
Let (G, -) be a group, and let

gh neven
h= .
o {hg n odd

Then (G, om, o) is the trivial brace if m = n (mod 2); otherwise it is the
almost trivial brace.

v

More interesting examples are coming.
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e Brace blocks from an abelian map
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Let (G, -) be a group. Denote by Map(G) the set of functions G — G.
For a, 8 € Map(G), n € Z define

(a+8)(9) = a(g)s(9)
(aB)(9) = a(B(g))
"=a-a--a a®=id (n>0)
(ne)(g) = a(9")
(a—pB)=a+(-15)
1=id
0(g) =1¢

Then Map(G) is a right near-ring ((Map(G), +) nonabelian, no left
distributive law).
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(a+ B)(9) = a(9)B(9), na(g) = a(g9")

Some facts:

Neither Ab(G) nor End(G) are closed under +

Both Ab(G) and End(G) are closed under multiplication.
Both Ab(G) and End(G) contain 0, and 1 € End(G).

If b € Ab(G) then —y € Ab(G).

For ¢ € Ab(G) and ¢ € End(G) we have ¢¢ € Ab(G).
For ¢ € Ab(G), ¢" € Ab(G) for all n > 0.

For ¢ € Ab(G), kY™ + ¢p" = £p" + kyp™ € Ab(G) for all
k.{,mneZ, mn>Q0.

For ¢ € Ab(G), «a, 8 € Map(G), ¥(a+ B) = Ya + 0.
Forall o, 8 € Map(G), —(a+ B) = -0 — .
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Near-ring a definition

Let ¢y € Ab(G). For each n > 0, define

Yn=—(1-9)"+1.

For example,
Yvo=—-1+1=0
Pr=—(1-¢)+1=@w-1)+1=9

ho=—(1 =9 +1=—(1-¢)(1-v))+1
=—((1—¥)—v(1 =) +1

=~ (1—w+v?—u)+1
=2y —¢2.
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Yo = —(1 — )" + 1

Properties, i) € Ab(G):
@ (Explicit formulation) v, = ({)y — (D)2 +--- £ (N)v", i.e.,
n n _1
vn(g) = v (90)) v2 (o)
@ (Recursive formulation) v, = v + ¥,_1(1 — v), i.e.,

¥n(g) = ¥(@)¥n-1(gv(g™")).

(Compatibility with multiplication) (vYm)n = ¥mn-
(Abelianness) v, € Ab(G).

.. ¢”(g(2))i1 .

o
o
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b € Ab(G) = n € Ab(G), ¥n =¥ + ¥p_1(1 — )

That ¢, € Ab(G) means that we can use 1, to create braces.
Let g on h = gun(g™")Mn(9)-

Then (G, -, o) is a brace.

By the recursive formulation of ¢, we can show

gonh=((9¥(g7") on—1 M)¥(9), 9.h € G.

Note that since ¢y = 0 and ¥y = ¢ we have (G, o) = (G, -) and
(G,o1) = (G,o).
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Main result

Theorem (K, 2021)

Let € Ab(G). Then (G, om,on) is a brace, hence {G, og,01,...} isa
brace block.

This can (but won’t) be shown by computation.

Case m = 0 Follows from above.
Case m | n Follows from above using (¢m)n/m € Ab(G, om) since

(T/Jm)n = Qpmn-

© (Compatibility with multiplication) (/m)n = ¥ mn-
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An abelian group wipes out the block

Suppose (G, op) is abelian.
Then, since Yk (X)ve(y) = ve(y)vi(x) for k, £ >0,

gonit h=((9¢(g™") on h)i(9)
= (hongv(9~"))¥(9)
= mpn(h™ ) gyp(g " )en(h)(9)
= hwn(l'r1 )g¥n(h)
=hopg
=goph.

So (G, om) = (G, 0p) forallm > n.

Once a brace block creates an abelian group, no new braces are
constructed.
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e Hopf-Galois structures on blocks
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Hopf-Galois structures

We can describe the regular, G-stable subgroups of Perm(G) arising
from a brace block.

Let ¢ € Ab(G). For n > 0 define N, = {1\, g € G} C Perm(G) by
ng" [ = gun(g™")hun(g), g.h € G.

Then N, < Perm(G) is regular and G-stable.

Note Np = A\(G).

In general, N, % G, in fact né")nﬁ,”) = ng;)nh; hence, N, = (G, op).
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A special case: fixed point free abelian maps

The theory of abelian maps comes from Childs’s 2013 construction of
“fixed point free abelian maps”, i.e., ¥ € Ab(G) with ¥(g) = g iff
g= 1G'

Turns out ¥, € Ab(G) is fixed point free if and only if ¢ is.

If 4 is fixed point free, then N, = A\(G); in fact L[Nn]G =~ H, as K-Hopf
algebras, where H, is the Hopf algebra giving the “canonical
nonclassical” Hopf-Galois structure.
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More generally

Consider the brace block induced by .
Then we have groups Ny, Ny, ... with Ny, = (G, o).

Let m > 0, and let L,/ Kn be a Galois extension with

We then have Hopf-Galois structures on L,/ Kn.

Question. For each n > 0, can we explicitly realize N, < Perm(Np)?
As bef ite Ny = {n{™ - g € G}, n{[h] = “h
s before, write Niw = {1y : g € G}, ng”[h] = gvm(g™~ ") m(g)-

Similarly for Nj,.
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N = {n{" : g € G}, ny"1h] = gm(g~" ) hom(g)

Let

ng ™ = 0.

This is a regular action, and

(M) (1) y 1 (m) (n)
AT )ng M) ™ = M k) gum(kynta -k~

In the special case m = 0 (so Ny = G via n(o) + g) we get
g I =1l ¢ gon h = gin(g™ ) in(g) = 15" [h]
and

Ay A = ) o

= ko (k1) gt (K)en(g= )k~ vn(g) — "Tkgwn(g—1)k—"4n(g)

as expected.
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e Brace blocks and solutions to the YBE
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A collection of solutions

Recall ¢ € Ab(G) gives the brace (G, -, o) and the YBE solution
R(g. h) = (v(g~")mi(g).w(hg~ ) u(g)gv (g mi(gh™)) .
Since ¥, € Ab(G) we quickly get solutions from the braces (G, -, op):
R(g. h) = (vn(g™")Min(@), valhg™ )" n(g)gun(g ™" Yun(gh™"))
More generally, for (G, om, on) the solution is

R(g, h) = (¥m(9)¥n(9~ ) Mn(@)m(g™ "),
Um(9)¥n(hg™ ) " n(9)¥m(g™")gen(g ™" ) on(gh™)).
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Twice as many solutions

R(g, h) = (¥m(9)¥n(9~ " hn(g)m(g™ "),
Um(9)¥n(hg™ )W " n(9)m(g™")g¥n(g ™" ) in(gh™))

The above comes from the brace (G, om, op).

However, the opposite brace (G, o}, op) with
gohh=homg= hpm(h~")gym(h) gives another solution, namely

R'(g,h) = (9¢n(g ") Mpn(9)m(h~ g " ¥m(h),
wn(h)wm(h_1 )me(h)wn(h_1 )-

Of course, R = R’ if and only if (G, o) is abelian.
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Not four times as many solutions

Of course, since (B, om, o) is a bi-skew brace we would get four
solutions, one from each of the braces

However, when working with brace blocks we only consider solutions
of type (1) and (2) to prevent double counting.

Alan Koch (Agnes Scott College) 31/51



© short examples
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Semidirect products

Let G = H x K with K abelian. Define ¢ : G — G by ¢(hk) = k.
Then 1) is abelian, keryy = H, ¢¥(G) = K, and (G,0) = H x K.
Clearly, ¥"(hk) = k = ¢(k) for all hk € G, hence v" =1, n> 1. So,

e (e @) (e (- =)o

Thus we have two trivial (nonisomorphic) braces (G, -, ) and (G, o, o),
as well as the braces (G, -, 0), (G, o,-) with hyky o hoko = hihoky ko.
We get 8 solutions to the YBE, or 6 if H is abelian; and

@ 2 HGS on a Galois extension, Galois group G of type G, 1 or 2 of
type H x K.

@ 1 or 2 HGS on an extension with Galois group H x K of type
H x K, 2 of type G.
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Dihedral

Let G=Dp=(r,s:r" =8> =rsrs =15) and let ¢ € Ab(G).
Can show that [¢(g)| = 1,2 for all g, so 2¢) = 0.
Possibilities:

@ ¢=0.Thenyp,=—-(1-9¢)"+1=—(1")+1=0forall n.

Every brace is trivial, and every Hopf-Galois structure is the
canonical nonclassical one.

@ ¢ # 0, fixed point free. By [Childs, 2013], ¥/(G) = (x) for some
x € Dy of order 2.

Since ¥(x) # x, ¥(x) = 1gand ¥? = 0.
(M (N2 o (M0 _02|n
Sova= (- Qv (o =mi= {0 217

The resulting braces are (G, -,:) = (G, 0,0), (G,-,0) = (G, o,-),
giving 4 nonequivalent solutions to the YBE.
Note. (G,o,-) = (G, -,0) viathemap 1 — ¢ : g — gy (g™").
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A quick aside: (1 —)(g) = gv(g ")

Proposition

Let G be a nonabelian group, and suppose iy € Ab(QG) is fixed point
free. Then for all0 < m < n we have (G,om,on) = (G,-,on—m)-

Sketch. Verify 1 — ¢ : (G,om,on) — (G, om_1,0,_1) iS an isomorphism.

(Easy to see—and well-known-that ¢ € Ab(G) is fixed point free if and
only if 1 — ¢ is a bijection.)

In the D, example, o, = oy = -, SO

(Gv "O) = (Gv ©0; 01) = (Gv 01702) = (G’ o, )

Alan Koch (Agnes Scott College) 35/51



Backto G = (r, s)

Generally, let FP(¢)) be the subgroup of G consisting of fixed points.

o FP(v) # {1a}. By [K, 2020], (G) = {1g, x} = FP(¢).
Then ¢?(g) = (g) forall g € G, i.e., 1»?> = ¢. Generally, y)" = 1).
We get four braces: (G, -, ), (G, o,0),(G,-,0), and (G, o, -).
The trivial braces are different from each other since
(G,0) = Cp x G or Dy» x Cp (depending on various factors).

We get either 6 or 8 solutions to the YBE, and:
e 3 or 4 HGS for Gal(L/K) = D,: two of type Dp,; and one of type Cap,

or two of type Dy, x Ca.
@ 3 HGS for Gal(L/K) = Cap, or4 HGS for Gal(L/K) = Dy /2 x Ca.
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e Longer examples
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Let G=(r,s:r"=8%>=rsrs=1g) x (t,u: t"=1? = tutu = 15),
where n > 3 is odd.

Defineyp: G— Gby ¢(r) =¢(t) =1g, ¥(s) = u, ¥(u) =s.
Then ¢(G) = (s, u) = Cy x Cy s0 ¢ € Ab(G).

Since su = y(us),

go(su) =gouy(us) = gy(g " )(us)i(g) = gy (us) = gsu
and
(suo g) = sup(su)~"giy(su) = suusgsu = gsu,
hence su € Z(G, o).
Since Z(G, ) is trivial we get (G, o) # (G, ).
Also, Z(G, o) is not abelian (rou = ru, uor =r='u).
In fact, (G, o) = Co x ((Cp x Cp) x Co) where C, acts via inverse.
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G=(r,s,t,u), ¥(r)

Now t» = 21 — 92, S0

Uo(r) = (rPW2(r ) =1g () =¢(P)WP(s ) =s
ba(t) = (Bt ) =1 wo(u) = p(LP)R(u™") = u.

Thus ker vy, = (r, t) and FP(y»2) = (s, u).
It follows that (G, 02) = (r, 1) x (s,u) = Cp x Cp x Ca x Cp = C2,.

We get nine nonisomorphic braces (G, om, op), 0 < m,n < 2, which
give one YBE solution when m = 2 and two solutions otherwise.

In total, we get 6 - 2 + 3 = 15 solutions.

Also, we get five HGS in each of the cases
Gal(L/K) = Dp x Dp, Cs x ((Cp x Cp) x Co), and Co, x Cop: two of type
D, x Dp, two of type Co x ((Cp x Cp) x Co), and one of type Cop x Cop,.
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Semidirect products of certain cyclic groups

Thanks to Lindsay Childs for pointing these out.

Let G= Ghyp= (S, t: 8" =th =tst~ s = 15) where k | ¢(h) and
b € Z; has order k.

We are interested in groups of the form G, x p» for some n.

Note that b” may not have order k, but there is a ¢ € Z;; of order k with
Ghkc = Ghk,br-

For brevity, write G, = Gy« 5" and assume h, k, b fixed.
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Gp= (s, t:s"=th=tst s =1g)

Results we need:

Lemma (Childs, 2020)
We have Gp = Gyeqk,n)-

Lemma (Childs, 2020)

Assume h is prime. For all n we have

<tk/gcd(k,n)> ktn

Z(G”):{G kin

So, G = G if and only if ged(k, n) = ged(k, m).
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Gp= (s, t:s"=th=tst s =1g)

Let G = Gy.

Pick j € Z, and define 1/ : G — G by 1(s) = 1g, (t) = t'/.
Then ¢ € Ab(G).

We have, since ¢, = —(1 —¢)" +1,

(1=v)s)=s  ¢n(s)=(-(1-9)"(s))s=5"s=1g
(1-v)(t)=t Un(t) = (—(1 —)"(1) t=tTt ="

Sopg=585'gs=gs

topt=t""tt"" = {2

tons=tt1st' T = s t=s? o,t,
and so (G, on) = Gjn = Ggeq(jn,k)-
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Some examples. (s) = 1g, ¥(t) = '/, (G, 0,) = Gpr

@ j=1. Then ¢ is trivial, and all braces are identical (and trivial).
We get two HGS: the classical and the canonical nonclassical.

@ h=13,k=4,b= 4. If j = 2 then the “sequence” of groups is

(G7OO) B (G,O1) — (G,OQ) _— (G’OS) -y ...

| | H H

G1 — Gg — G4 — G4 —_— -

Since G, is abelian, we have 2 - 6 + 3 = 15 solutions to the YBE.
We have constructed 5 HGS in the case Gal(L/K) = (G, om) for
0 < m < 2: two HGS of type (G, op), two of type (G, o1), and one
of type (G, o).
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Some examples. (s) = 1g, ¥(t) = ', (G,op) = Gjr

@ h=13,k=12,b=4,j = 2. Similar, except now Gy is nonabelian,
giving us at least 2 - 9 = 18 solutions to the YBE.
In fact, can show that o, = o, if and only if m = n (mod 2) and
m.n>2.
So {(G,om,on) : 0 < m,n < 3} includes a complete set of braces.
The total number of solutions to the YBE is 2 - 16 = 32 (though
between 2 and 12 equivalent since (G, 02) = (G, o3)).
o For Gal(L/K) = (G, op) we have 2 HGS of type (G, op), 2 of type
(G, 01), and either 2 or 4 HGS of type (G, o»). Total: 6 or 8.
e For Gal(L/K) = (G, o1) we have 2 HGS of type (G, op), 2 of type
(G, 01), and either 2 or 4 HGS of type (G, o»). Total: 6 or 8.
e For Gal(L/K) = (G, o2) we have 2 or 4 HGS of type (G, op), 2 or 4
of type (G, o1), and either 4 or 6 HGS of type (G, op). Total:
between 8 and 14.

Issue. Need to determine if (G, om, 02) = (G, o, 03).
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A special case. (s) = 1g, ¥(t) = t', (G, op) = Gpr

Suppose K is also prime. Then G is the nonabelian group of order hk.

@ If k| jthen kery = (s), FP(¢) = (t) and (G, o1) = Cp x Cx = Cp.
Two distinct groups, 6 solutions to YBE, 2 HGS of type G and 1 of
type Cpx With Gal(L/K) = G as well as with Gal(L/K) = Cp.

@ If j is picked to be a primitive root modulo k, then by [K-Truman
2020] we get k — 1 nonisomorphic braces, hence 2(k — 1)
solutions to the YBE, and 2(k — 1) HGS on L/K with
Gal(L/K) = G (all of type G).

These account for all braces (up to isomorphism) of the form (B, -, o)
with (B, -) = G, along with the trivial brace on Cy.
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Special case . ¥(s) = 1g, ¥(t) = t'7, (G, op) = Gpr

Let N > 0, let h be a prime with h =1 (mod 2V), let k = 2N and j = 2.

Then (G, op) = G,

The brace block includes N + 1 pairwise nonisomorphic groups, N of
which are nonabelian.

cd(2n,2N) = Gomintnny @nd (G, op) is abelian.

We get
@ 2N(N + 1) total solutions from (G, om, op) with m = N.
@ N + 1 solutions from (G, op, op).

In total, we have 2N(N + 1) + (N + 1) = 2N? + 3N + 1 solutions.

Any extension L/K with Gal(L/K) = (G, op), 0 < n < N has 2 HGS of
type (G, o) with m < N and 1 HGS of type (G, op).

Thus, the number of braces, the number of YBE solutions, and the
overall number of HGS produced by our brace blocks is unbounded.
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a Open Problems
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The isomorphism type of (G, o).

Generally, it appears to be difficult to know this for n > 0.

Special cases:
@ If ¢ is fixed point free then (G, o,) = G for all n.
@ If |kerp| - | FP(vn)| = |G| then (G, o) = ker ¢y x FP(¢p).

Things we do know:

@ (G, op) contains subgroups isomorphic to (1 — )™ (G) for all
m < n.

@ (G, op) contains a subgroup isomorphic to ker ¢, x FP(1p).
@ (G, op) is abelian if and only if (1 —¥)"(G) C Z(G, ).
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Hopf algebra questions

@ Is there a simple way to understand H,, := L[(G, o,)]¢ and/or its
action on L?
We do know that if h = 3" ¢ agny” € H then
h-x=3cca9 " (x).
So knowing the elements of H, makes the action transparent.

@ Is there a simple way to understand Hp  := L[(G, om)](@°") (after
suitably redefining L)?

© Can we determine when Hp, = H, as K-Hopf algebras?
Note if ¢ is fixed point free then H, = H, for all n.
We suspect the converse is true.

© Can we determine when Hy, = H, as K-algebras?
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Block structural questions

We do not have examples where our construction yields:

@ A group (G, o) = G which can not come from a fixed point free
map.

@ A block with (G, On) = (G, On+1) 7% (G, On+2).

@ A block with (G, o) 2 (G, 0n11) but (G, o) = (G, o) for some
m>2.

The latter two seem unlikely since, for example, ker ¢, < ker 1.
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Thank you.
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