Abelian maps and brace blocks

Alan Koch

Agnes Scott College

Fauxmaha, May 25, 2021

Outline

(9) Introduction
(2) Brace blocks from an abelian map
(3) Hopf-Galois structures on blocks
(4) Brace blocks and solutions to the YBE
(5) Short examples
(6) Longer examples
(7) Open Problems

Abelian maps: a review

Let $G=(G, \cdot)$ be a (nonabelian) group.

Let L / K be a Galois extension, Galois group G.

An abelian map on G is an endomorphism $\psi: G \rightarrow G$ such that $\psi(G) \leq G$ is abelian.

Denote by $\mathrm{Ab}(G)$ the set of all abelian maps on G.

In 2020 we showed how $\psi \in \operatorname{Ab}(G)$ could be used to put a Hopf-Galois structure on L / K, as well as construct a (bi-skew) brace.

The Hopf-Galois structure: a review

Let $\psi \in \operatorname{Ab}(G)$.
For $g \in G$ define $\eta_{g}: G \rightarrow G$ by $\eta_{g}[h]=g \psi\left(g^{-1}\right) h \psi(g)$.
Note $\eta_{g}\left[1_{G}\right]=g$.
Then $N:=\left\{\eta_{g}: g \in G\right\}$ is a regular, G-stable subgroup of $\operatorname{Perm}(G)$.
("G-stable" = "normalized by conjugation by $\lambda(G) \leq \operatorname{Perm}(G)$ ".)
Explicitly, for $k, g \in G$ we have ${ }^{k} \eta_{g}=\eta_{k g \psi\left(g^{-1}\right) k^{-1} \psi(g)}$.
So, by Greither-Pareigis, $L[N]^{G}$ is a Hopf algebra which puts a Hopf-Galois structure on L / K.

The HGS structure is said to be of type N.
Also, $\psi_{1}, \psi_{2} \in \operatorname{Ab}(G)$ give the same Hopf-Galois structure if and only if $\psi_{1}(g) \psi_{2}\left(g^{-1}\right) \in Z(G)$ for all $g \in G$.

The commuting Hopf-Galois structure: a review

Recall that if N is a regular, G-stable subgroup, then so is

$$
N^{\prime}:=\operatorname{Cent}_{\operatorname{Perm}(G)}(N)=\{\pi \in \operatorname{Perm}(G): \pi \eta=\eta \pi \text { for all } \eta \in N\} .
$$

For $\psi \in \operatorname{Ab}(G)$ we have $N=\left\{\eta_{g}: g \in G\right\}, \eta_{g}[h]=g \psi\left(g^{-1}\right) h \psi(g)$.
Easy to verify that $N^{\prime}=\left\{\pi_{g}: g \in G\right\}$ with

$$
\pi_{g}[h]=h \psi\left(h^{-1}\right) g \psi(h) .
$$

Thus, ψ gives us two related Hopf-Galois structures (G nonabelian).
"Related": the actions of $H:=L[N]^{G}$ and $H^{\prime}:=L\left[N^{\prime}\right]^{G}$ on L / K commute with each other [Truman, 2018].

The brace: a review

Recall a skew left brace (hereafter, brace) is a triple (B, \cdot, \circ) where (B, \cdot) and (B, \circ) are groups (dot group and circle group respectively) and, for all $x, y, z \in B$,

$$
x \circ(y \cdot z)=(x \circ y) \cdot x^{-1} \cdot(x \circ z), x \cdot x^{-1}=1_{B} .
$$

Turns out $x \cdot 1_{B}=x \circ 1_{B}=x$ for all $x \in B$.
We will frequently suppress the dot and write $x y=x \cdot y$.

Proposition (K, 2020)

Let $\psi \in \mathrm{Ab}(G)$, and define $g \circ h=\eta_{g}[h]=g \psi\left(g^{-1}\right) h \psi(g)$.
Then ($G, \cdot, \cdot \circ$) is a brace.
Caveat. The "abelian map to brace" relationship here is different from the usual "regular, G-stable subgroup" to "brace" relationship given by Byott and Vendramin.

Opposite braces: a review

Let (B, \cdot, \circ) be a brace.

Then $\left(B, r^{\prime}, \circ\right)$ is also a brace, where $a \cdot^{\prime} b=b \cdot a$.

We call this is opposite brace to the one above. (Developed independently by K-Truman and Rump.)

Fact. [K-Truman, 2019] If $N \leq \operatorname{Perm}(G)$ is regular and G-stable, and $N^{\prime}=\operatorname{Cent}_{\text {Perm }(G)} N$, then their corresponding braces are opposite.

Yang-Baxter equation: a review

Braces give set-theoretic solutions to the Yang-Baxter equation.
A set-theoretic solution to the YBE is a set B and a function $R: B^{2} \rightarrow B^{2}$ such that

$$
(R \times \mathrm{id})(\mathrm{id} \times R)(R \times \mathrm{id})=(\mathrm{id} \times R)(R \times \mathrm{id})(\mathrm{id} \times R) .
$$

If (B, \cdot, \circ) is a brace and \bar{a} is the inverse to $a \in(G, \circ)$ then

$$
R(x, y)=\left(x^{-1}(x \circ y), \overline{x^{-1}(x \circ y)} \circ x \circ y\right), x, y \in B
$$

is the corresponding solution.
By considering the opposite brace, we get the additional solution

$$
R^{\prime}(x, y)=\left((x \circ y) x^{-1}, \overline{(x \circ y) x^{-1}} \circ x \circ y\right), x, y \in B,
$$

which is inverse to the one above (in that $R^{\prime} R=R R^{\prime}=\mathrm{id}$).

Equivalent solutions

Suppose ($B_{1}, \cdot \cdot \cdot{ }_{1}$) and ($B_{2}, \cdot{ }_{2}, o_{2}$) are isomorphic braces, i.e., there is a bijection $\varphi: B_{1} \rightarrow B_{2}$ which which preserve the dot and circle operations.
Let R_{1}, R_{2} be the corresponding YBE solutions.
Then $R_{1} \neq R_{2}$ in general, however we will say that these two solutions are equivalent.
Short rationale: B_{1}, B_{2} each induce vector space solutions to the YBE $r: V \otimes V \rightarrow V \otimes V$ with analogous twisting property, where $\operatorname{dim} V=\left|B_{1}\right|=\left|B_{2}\right|$. Equivalent set-theoretic braces give the same vector space solution up to a choice of basis.
Fact. If (G, \cdot, o) is a brace, the isomorphic braces with the same circle group (G, \circ) are of the form ($G, \cdot,, \circ$) where $\varphi \in \operatorname{Aut}(G, \circ$) and $g \cdot \varphi h=\varphi\left(\varphi^{-1}(g) \cdot \varphi^{-1}(h)\right)$.

The solutions of interest to us: a review

Example (abelian map case)

For $\psi \in \operatorname{Ab}(G)$ we get the brace described previously, which leads to the solution

$$
R(g, h)=\left(\psi\left(g^{-1}\right) h \psi(g), \psi\left(h g^{-1}\right) h^{-1} \psi(g) g \psi\left(g^{-1}\right) h \psi\left(g h^{-1}\right)\right)
$$

Using the opposite brace, we get the second solution

$$
R^{\prime}(g, h)=\left(g \psi\left(g^{-1}\right) g \psi(g) g^{-1}, \psi(h) g \psi\left(h^{-1}\right)\right)
$$

We have seen that ψ_{1}, ψ_{2} give the same brace (and hence the same solution) if and only if $\psi_{1}(g) \psi_{2}\left(g^{-1}\right) \in Z(G)$ for all $g \in G$.
Note that if $\psi \in \operatorname{Ab}(G)$, then $\varphi \psi \varphi^{-1} \in \operatorname{Ab}(G)$ for all $\varphi \in \operatorname{Aut}(G)$, and their braces are necessarily isomorphic.

The brace: a review

Recall that a brace (B, \cdot, \circ) is a bi-skew brace if (B, \circ, \cdot) is also a brace.

In other words, (B, \cdot, \circ) is a bi-skew brace if any only if

$$
\begin{aligned}
& a \circ(b \cdot c)=(a \circ b) \cdot a^{-1} \cdot(a \circ c) \\
& a \cdot(b \circ c)=(a \cdot b) \circ \bar{a} \circ(a \cdot c) .
\end{aligned}
$$

Easy to show: for $\psi \in \operatorname{Ab}(G)$ the resulting brace (G, \cdot, \circ) is bi-skew.

In fact, (G, \circ, \cdot) is the Byott-Vendramin brace corresponding to the regular, G-stable subgroup $N=\left\{\eta_{g}: g \in G\right\}$.

An observation from 2020

If $\psi \in \operatorname{Ab}(G)=\operatorname{Ab}(G, \cdot)$, then

$$
\psi(g \circ h)=\psi(g) \circ \psi(h)
$$

i.e., $\psi \in \operatorname{Ab}(G, \circ)$.

Thus we could apply the brace construction starting with (G, \circ): if

$$
g \star h=g \circ \psi(\bar{g}) \circ h \circ \psi(g)
$$

then (G, \circ, \star) is a bi-skew brace.
Repeating this idea would, in theory, create a "bi-skew brace chain". However, it turns out (G, \cdot, \star) is also a bi-skew brace.

So perhaps more is going on here.

Brace blocks

This is our new construction for 2021.

Definition

A brace block is a set B together with a family of binary operations $\left\{o_{n}: n \in \mathbb{Z} \geq 0\right\}$ such that $\left(B, \circ_{m}, \circ_{n}\right)$ is a brace for all $m, n \geq 0$.

Note that each brace in a brace block is necessarily bi-skew.

However, it is useful to simply regard them as (skew left) braces.

First examples

Example (Trivial brace block)

Let (G, \cdot) be a group, and let $\left(g \circ_{n} h\right)=g h$ for all n. Then each brace is the trivial brace on G (i.e., the two operations coincide).

Example (Almost trivial brace block)

Let (G, \cdot) be a group, and let

$$
g \circ_{n} h=\left\{\begin{array}{ll}
g h & n \text { even } \\
h g & n \text { odd }
\end{array} .\right.
$$

Then $\left(G, \circ_{m}, \circ_{n}\right)$ is the trivial brace if $m \equiv n(\bmod 2)$; otherwise it is the almost trivial brace.

More interesting examples are coming.

Outline

(1) Introduction
(2) Brace blocks from an abelian map
(3) Hopf-Galois structures on blocks
4. Brace blocks and solutions to the YBE
(5) Short examples

6 Longer examples
(7) Open Problems

Some notation

Let (G, \cdot) be a group. Denote by $\operatorname{Map}(G)$ the set of functions $G \rightarrow G$.
For $\alpha, \beta \in \operatorname{Map}(G), n \in \mathbb{Z}$ define

$$
\begin{aligned}
(\alpha+\beta)(g) & =\alpha(g) \beta(g) \\
(\alpha \beta)(g) & =\alpha(\beta(g)) \\
\alpha^{n} & =\alpha \cdot \alpha \cdots \alpha, \alpha^{0}=\mathrm{id} \\
(n \alpha)(g) & =\alpha\left(g^{n}\right) \\
(\alpha-\beta) & =\alpha+(-1 \beta) \\
1 & =\mathrm{id} \\
0(g) & =1_{G}
\end{aligned}
$$

Then $\operatorname{Map}(G)$ is a right near-ring $((\operatorname{Map}(G),+)$ nonabelian, no left distributive law).

$(\alpha+\beta)(g)=\alpha(g) \beta(g), n \alpha(g)=\alpha\left(g^{n}\right)$

Some facts:

- Neither $\operatorname{Ab}(G)$ nor $\operatorname{End}(G)$ are closed under +.
- Both $\mathrm{Ab}(G)$ and $\operatorname{End}(G)$ are closed under multiplication.
- Both $\mathrm{Ab}(G)$ and $\operatorname{End}(G)$ contain 0 , and $1 \in \operatorname{End}(G)$.
- If $\psi \in \operatorname{Ab}(G)$ then $-\psi \in \operatorname{Ab}(G)$.
- For $\psi \in \operatorname{Ab}(G)$ and $\phi \in \operatorname{End}(G)$ we have $\psi \phi \in \operatorname{Ab}(G)$.
- For $\psi \in \operatorname{Ab}(G), \psi^{n} \in \operatorname{Ab}(G)$ for all $n \geq 0$.
- For $\psi \in \operatorname{Ab}(G), k \psi^{m}+\ell \psi^{n}=\ell \psi^{n}+k \psi^{m} \in \mathrm{Ab}(G)$ for all $k, \ell, m, n \in \mathbb{Z}, m, n>0$.
- For $\psi \in \operatorname{Ab}(G), \alpha, \beta \in \operatorname{Map}(G), \psi(\alpha+\beta)=\psi \alpha+\psi \beta$.
- For all $\alpha, \beta \in \operatorname{Map}(G),-(\alpha+\beta)=-\beta-\alpha$.

Near-ring a definition

Let $\psi \in \operatorname{Ab}(G)$. For each $n \geq 0$, define

$$
\psi_{n}=-(1-\psi)^{n}+1
$$

For example,

$$
\begin{aligned}
\psi_{0} & =-1+1=0 \\
\psi_{1} & =-(1-\psi)+1=(\psi-1)+1=\psi \\
\psi_{2} & =-(1-\psi)^{2}+1=-((1-\psi)(1-\psi))+1 \\
& =-((1-\psi)-\psi(1-\psi))+1 \\
& =-\left(1-\psi+\psi^{2}-\psi\right)+1 \\
& =2 \psi-\psi^{2}
\end{aligned}
$$

$\psi_{n}=-(1-\psi)^{n}+1$

Properties, $\psi \in \operatorname{Ab}(G)$:
(1) (Explicit formulation) $\psi_{n}=\binom{n}{1} \psi-\binom{n}{2} \psi^{2}+\cdots \pm\binom{ n}{n} \psi^{n}$, i.e.,

$$
\psi_{n}(g)=\psi\left(g^{\binom{n}{1}}\right) \psi^{2}\left(g^{\binom{n}{2}}\right)^{-1} \cdots \psi^{n}\left(g^{\binom{n}{n}}\right)^{ \pm 1}
$$

(2) (Recursive formulation) $\psi_{n}=\psi+\psi_{n-1}(1-\psi)$, i.e.,

$$
\psi_{n}(g)=\psi(g) \psi_{n-1}\left(g \psi\left(g^{-1}\right)\right)
$$

(3) (Compatibility with multiplication) $\left(\psi_{m}\right)_{n}=\psi_{m n}$.
(4) (Abelianness) $\psi_{n} \in \operatorname{Ab}(G)$.
$\psi \in \operatorname{Ab}(G) \Rightarrow \psi_{n} \in \operatorname{Ab}(G), \psi_{n}=\psi+\psi_{n-1}(1-\psi)$

That $\psi_{n} \in \operatorname{Ab}(G)$ means that we can use ψ_{n} to create braces.
Let $g \circ_{n} h=g \psi_{n}\left(g^{-1}\right) h \psi_{n}(g)$.
Then $\left(G, \cdot, o_{n}\right)$ is a brace.
By the recursive formulation of ψ_{n} we can show

$$
g \circ_{n} h=\left(\left(g \psi\left(g^{-1}\right) \circ_{n-1} h\right)\right) \psi(g), g, h \in G .
$$

Note that since $\psi_{0}=0$ and $\psi_{1}=\psi$ we have $\left(G, \circ_{0}\right)=(G, \cdot)$ and $\left(G, \circ_{1}\right)=(G, \circ)$.

Main result

Theorem (K, 2021)

Let $\psi \in \operatorname{Ab}(G)$. Then $\left(G, \circ_{m}, \circ_{n}\right)$ is a brace, hence $\left\{G, \circ_{0}, \circ_{1}, \ldots\right\}$ is a brace block.

This can (but won't) be shown by computation.
Case $m=0$ Follows from above.
Case $m \mid n$ Follows from above using $\left(\psi_{m}\right)_{n / m} \in \operatorname{Ab}\left(G, \circ_{m}\right)$ since

$$
\left(\psi_{m}\right)_{n}=\psi_{m n} .
$$

Recall

(3) (Compatibility with multiplication) $\left(\psi_{m}\right)_{n}=\psi_{m n}$.

An abelian group wipes out the block

Suppose $\left(G, o_{n}\right)$ is abelian.
Then, since $\psi_{k}(x) \psi_{\ell}(y)=\psi_{\ell}(y) \psi_{k}(x)$ for $k, \ell>0$,

$$
\begin{aligned}
g \circ_{n+1} h & =\left(\left(g \psi\left(g^{-1}\right) \circ_{n} h\right) \psi(g)\right. \\
& =\left(h \circ_{n} g \psi\left(g^{-1}\right)\right) \psi(g) \\
& =h \psi_{n}\left(h^{-1}\right) g \psi\left(g^{-1}\right) \psi_{n}(h) \psi(g) \\
& =h \psi_{n}\left(h^{-1}\right) g \psi_{n}(h) \\
& =h \circ_{n} g \\
& =g \circ_{n} h .
\end{aligned}
$$

So $\left(G, \circ_{m}\right)=\left(G, \circ_{n}\right)$ for all $m \geq n$.
Once a brace block creates an abelian group, no new braces are constructed.

Outline

(9) Introduction

(2) Brace blocks from an abelian map
(3) Hopf-Galois structures on blocks
(4) Brace blocks and solutions to the YBE
(5) Short examples
(6) Longer examples
(7) Open Problems

Hopf-Galois structures

We can describe the regular, G-stable subgroups of $\operatorname{Perm}(G)$ arising from a brace block.

Let $\psi \in \operatorname{Ab}(G)$. For $n \geq 0$ define $N_{n}=\left\{\eta_{g}^{(n)}, g \in G\right\} \subset \operatorname{Perm}(G)$ by

$$
\eta_{g}^{(n)}[h]=g \psi_{n}\left(g^{-1}\right) h \psi_{n}(g), g, h \in G .
$$

Then $N_{n} \leq \operatorname{Perm}(G)$ is regular and G-stable.
Note $N_{0}=\lambda(G)$.
In general, $N_{n} \neq G$, in fact $\eta_{g}^{(n)} \eta_{h}^{(n)}=\eta_{g \circ_{n} h}^{(n)} ;$ hence, $N_{n} \cong\left(G, \circ_{n}\right)$.

A special case: fixed point free abelian maps

The theory of abelian maps comes from Childs's 2013 construction of "fixed point free abelian maps", i.e., $\psi \in \operatorname{Ab}(G)$ with $\psi(g)=g$ iff $g=1_{G}$.

Turns out $\psi_{n} \in \operatorname{Ab}(G)$ is fixed point free if and only if ψ is.

If ψ is fixed point free, then $N_{n} \cong \lambda(G)$; in fact $L\left[N_{n}\right]^{G} \cong H_{\lambda}$ as K-Hopf algebras, where H_{λ} is the Hopf algebra giving the "canonical nonclassical" Hopf-Galois structure.

More generally

Consider the brace block induced by ψ.
Then we have groups N_{0}, N_{1}, \ldots with $N_{m}=\left(G, \circ_{m}\right)$.
Let $m \geq 0$, and let L_{m} / K_{m} be a Galois extension with $\operatorname{Gal}\left(L_{m} / K_{m}\right)=N_{m}$.

We then have Hopf-Galois structures on L_{m} / K_{m}.
Question. For each $n \geq 0$, can we explicitly realize $N_{n} \leq \operatorname{Perm}\left(N_{m}\right)$?
As before, write $N_{m}=\left\{\eta_{g}^{(m)}: g \in G\right\}, \eta_{g}^{(m)}[h]=g \psi_{m}\left(g^{-1}\right) h \psi_{m}(g)$.
Similarly for N_{n}.

$N_{m}=\left\{\eta_{g}^{(m)}: g \in G\right\}, \eta_{g}^{(m)}[h]=g \psi_{m}\left(g^{-1}\right) h \psi_{m}(g)$

Let

$$
\eta_{g}^{(n)}\left[\eta_{h}^{(m)}\right]=\eta_{g o_{n} h}^{(m)} .
$$

This is a regular action, and

$$
\lambda\left(\eta_{k}^{(m)}\right) \eta_{g}^{(n)} \lambda\left(\eta_{k}^{(m)}\right)^{-1}=\eta_{k \psi_{m}\left(k^{-1}\right) g \psi_{m}(k) \psi_{n}\left(g^{-1}\right) k^{-1} \psi_{n}(g) .} .
$$

In the special case $m=0$ (so $N_{0} \cong G$ via $\eta_{g}^{(0)} \leftrightarrow g$) we get

$$
\eta_{g}^{(n)}\left[\eta_{h}^{(0)}\right]=\eta_{g \circ_{n} h}^{(0)} \leftrightarrow g \circ_{n} h=g \psi_{n}\left(g^{-1}\right) h \psi_{n}(g)=\eta_{g}^{(n)}[h]
$$

and

$$
\lambda\left(\eta_{k}^{(0)}\right) \eta_{g}^{(n)} \lambda\left(\eta_{k}^{(0)}\right)^{-1}=\eta_{k \psi_{0}\left(k^{-1}\right) g \psi_{0}(k) \psi_{n}\left(g^{-1}\right) k^{-1} \psi_{n}(g)}=\eta_{k g \psi_{n}\left(g^{-1}\right) k^{-1} \psi_{n}(g)}^{(n)}
$$

as expected.

Outline

(9) Introduction

(2) Brace blocks from an abelian map
(3) Hopf-Galois structures on blocks
4. Brace blocks and solutions to the YBE
(5) Short examples

6 Longer examples
(7) Open Problems

A collection of solutions

Recall $\psi \in \operatorname{Ab}(G)$ gives the brace (G, \cdot, \circ) and the YBE solution

$$
R(g, h)=\left(\psi\left(g^{-1}\right) h \psi(g), \psi\left(h g^{-1}\right) h^{-1} \psi(g) g \psi\left(g^{-1}\right) h \psi\left(g h^{-1}\right)\right) .
$$

Since $\psi_{n} \in \operatorname{Ab}(G)$ we quickly get solutions from the braces $\left(G, \cdot, o_{n}\right)$:

$$
R(g, h)=\left(\psi_{n}\left(g^{-1}\right) h \psi_{n}(g), \psi_{n}\left(h g^{-1}\right) h^{-1} \psi_{n}(g) g \psi_{n}\left(g^{-1}\right) h \psi_{n}\left(g h^{-1}\right)\right) .
$$

More generally, for $\left(G, \circ_{m}, \circ_{n}\right)$ the solution is

$$
\begin{aligned}
R(g, h)= & \left(\psi_{m}(g) \psi_{n}\left(g^{-1}\right) h \psi_{n}(g) \psi_{m}\left(g^{-1}\right),\right. \\
& \left.\psi_{m}(g) \psi_{n}\left(h g^{-1}\right) h^{-1} \psi_{n}(g) \psi_{m}\left(g^{-1}\right) g \psi_{n}\left(g^{-1}\right) h \psi_{n}\left(g h^{-1}\right)\right) .
\end{aligned}
$$

Twice as many solutions

$$
\begin{aligned}
R(g, h)= & \left(\psi_{m}(g) \psi_{n}\left(g^{-1}\right) h \psi_{n}(g) \psi_{m}\left(g^{-1}\right)\right. \\
& \left.\psi_{m}(g) \psi_{n}\left(h g^{-1}\right) h^{-1} \psi_{n}(g) \psi_{m}\left(g^{-1}\right) g \psi_{n}\left(g^{-1}\right) h \psi_{n}\left(g h^{-1}\right)\right)
\end{aligned}
$$

The above comes from the brace $\left(G, \circ_{m}, \circ_{n}\right)$. However, the opposite brace ($G, \circ_{m}^{\prime}, \circ_{n}$) with $g \circ_{m}^{\prime} h=h \circ_{m} g=h \psi_{m}\left(h^{-1}\right) g \psi_{m}(h)$ gives another solution, namely

$$
\begin{aligned}
R^{\prime}(g, h)= & \left(g \psi_{n}\left(g^{-1}\right) h \psi_{n}(g) \psi_{m}\left(h^{-1}\right) g^{-1} \psi_{m}(h)\right. \\
& \left.\psi_{n}(h) \psi_{m}\left(h^{-1}\right) g \psi_{m}(h) \psi_{n}\left(h^{-1}\right)\right)
\end{aligned}
$$

Of course, $R=R^{\prime}$ if and only if $\left(G, \circ_{m}\right)$ is abelian.

Not four times as many solutions

Of course, since (B, \circ_{m}, \circ_{n}) is a bi-skew brace we would get four solutions, one from each of the braces
(1) $\left(B, o_{m}, \circ_{n}\right)$
(2) $\left(B, \circ_{m}^{\prime}, \circ_{n}\right)$
(3) $\left(B, \circ_{n}, \circ_{m}\right)$
(9) $\left(B, \circ_{n}^{\prime}, \circ_{m}\right)$.

However, when working with brace blocks we only consider solutions of type (1) and (2) to prevent double counting.

Outline

(9) Introduction

(2) Brace blocks from an abelian map
(3) Hopf-Galois structures on blocks
(4) Brace blocks and solutions to the YBE
(5) Short examples
(6) Longer examples
(7) Open Problems

Semidirect products

Let $G=H \rtimes K$ with K abelian. Define $\psi: G \rightarrow G$ by $\psi(h k)=k$.
Then ψ is abelian, $\operatorname{ker} \psi=H, \psi(G)=K$, and $(G, \circ) \cong H \times K$.
Clearly, $\psi^{n}(h k)=k=\psi(k)$ for all $h k \in G$, hence $\psi^{n}=\psi, n \geq 1$. So,

$$
\psi_{n}=\binom{n}{1} \psi-\binom{n}{2} \psi^{2}+\cdots \pm\binom{ n}{n} \psi^{n}=\left(\binom{n}{1}-\binom{n}{2}+\cdots \pm\binom{ n}{n}\right) \psi=\psi
$$

Thus we have two trivial (nonisomorphic) braces (G, \cdot, \cdot) and (G, \circ, \circ), as well as the braces $(G, \cdot, \circ),(G, \circ, \cdot)$ with $h_{1} k_{1} \circ h_{2} k_{2}=h_{1} h_{2} k_{1} k_{2}$.
We get 8 solutions to the YBE, or 6 if H is abelian; and

- 2 HGS on a Galois extension, Galois group G of type G, 1 or 2 of type $H \times K$.
- 1 or 2 HGS on an extension with Galois group $H \times K$ of type $H \times K$, 2 of type G.

Dihedral

Let $G=D_{n}=\left\langle r, s: r^{n}=s^{2}=r s r s=1_{G}\right\rangle$ and let $\psi \in \operatorname{Ab}(G)$.
Can show that $|\psi(g)|=1,2$ for all g, so $2 \psi=0$.
Possibilities:

- $\psi=0$. Then $\psi_{n}=-(1-\psi)^{n}+1=-\left(1^{n}\right)+1=0$ for all n. Every brace is trivial, and every Hopf-Galois structure is the canonical nonclassical one.
- $\psi \neq 0$, fixed point free. By [Childs, 2013], $\psi(G)=\langle x\rangle$ for some $x \in D_{n}$ of order 2.
Since $\psi(x) \neq x, \psi(x)=1_{G}$ and $\psi^{2}=0$.
So $\psi_{n}=\binom{n}{1} \psi-\binom{n}{2} \psi^{2}+\cdots \pm\binom{ n}{n} \psi^{n}=n \psi=\left\{\begin{array}{ll}0 & 2 \mid n \\ \psi & 2 \nmid n\end{array}\right.$.
The resulting braces are $(G, \cdot, \cdot)=(G, \circ, \circ),(G, \cdot, \circ) \cong(G, \circ, \cdot)$, giving 4 nonequivalent solutions to the YBE.
Note. $(G, \circ, \cdot) \cong(G, \cdot, \circ)$ via the map $1-\psi: g \mapsto g \psi\left(g^{-1}\right)$.

A quick aside: $(1-\psi)(g)=g \psi\left(g^{-1}\right)$

Proposition

Let G be a nonabelian group, and suppose $\psi \in \operatorname{Ab}(G)$ is fixed point free. Then for all $0 \leq m \leq n$ we have $\left(G, \circ_{m}, \circ_{n}\right) \cong\left(G, \cdot, \circ_{n-m}\right)$.

Sketch. Verify $1-\psi:\left(G, \circ_{m}, \circ_{n}\right) \rightarrow\left(G, \circ_{m-1}, \circ_{n-1}\right)$ is an isomorphism.
(Easy to see-and well-known-that $\psi \in \operatorname{Ab}(G)$ is fixed point free if and only if $1-\psi$ is a bijection.)

In the D_{n} example, $\circ_{2}=\circ_{0}=\cdot$, so

$$
(G, \cdot, \circ)=\left(G, \circ_{0}, \circ_{1}\right) \cong\left(G, \circ_{1}, \circ_{2}\right)=(G, \circ, \cdot)
$$

Back to $G=\langle r, s\rangle$

Generally, let $\operatorname{FP}(\psi)$ be the subgroup of G consisting of fixed points.

- $\operatorname{FP}(\psi) \neq\left\{1_{G}\right\}$. By $[\mathrm{K}, 2020], \psi(G)=\left\{1_{G}, x\right\}=\mathrm{FP}(\psi)$.

Then $\psi^{2}(g)=\psi(g)$ for all $g \in G$, i.e., $\psi^{2}=\psi$. Generally, $\psi^{n}=\psi$. We get four braces: $(G, \cdot, \cdot),(G, \circ, \circ),(G, \cdot, \circ)$, and (G, \circ, \cdot). The trivial braces are different from each other since $(G, \circ) \cong C_{n} \times C_{2}$ or $D_{n / 2} \times C_{2}$ (depending on various factors).

We get either 6 or 8 solutions to the YBE, and:

- 3 or 4 HGS for $\operatorname{Gal}(L / K)=D_{n}$: two of type D_{n}; and one of type $C_{2 n}$ or two of type $D_{n / 2} \times C_{2}$.
- 3 HGS for $\mathrm{Gal}(L / K)=C_{2 n}$, or 4 HGS for $\mathrm{Gal}(L / K)=D_{n / 2} \times C_{2}$.

Outline

(9) Introduction

(2) Brace blocks from an abelian map
(3) Hopf-Galois structures on blocks
(4) Brace blocks and solutions to the YBE
(5) Short examples

6 Longer examples
(7) Open Problems

$G=D_{n} \times D_{n}$

Let $G=\left\langle r, s: r^{n}=s^{2}=r s r s=1_{G}\right\rangle \times\left\langle t, u: t^{n}=u^{2}=t u t u=1_{G}\right\rangle$, where $n \geq 3$ is odd.
Define $\psi: G \rightarrow G$ by $\psi(r)=\psi(t)=1_{G}, \psi(s)=u, \psi(u)=s$.
Then $\psi(G)=\langle s, u\rangle \cong C_{2} \times C_{2}$ so $\psi \in \operatorname{Ab}(G)$.
Since $s u=\psi(u s)$,

$$
g \circ(s u)=g \circ \psi(u s)=g \psi\left(g^{-1}\right) \psi(u s) \psi(g)=g \psi(u s)=g s u
$$

and

$$
(s u \circ g)=s u \psi(s u)^{-1} g \psi(s u)=s u u s g s u=g s u
$$

hence $s u \in Z(G, \circ)$.
Since $Z(G, \cdot)$ is trivial we get $(G, \circ) \not \neq(G, \cdot)$.
Also, $Z(G, \circ)$ is not abelian ($r \circ u=r u, u \circ r=r^{-1} u$).
In fact, $(G, \circ) \cong C_{2} \times\left(\left(C_{n} \times C_{n}\right) \rtimes C_{2}\right)$ where C_{2} acts via inverse.

$G=\langle r, s, t, u\rangle, \psi(r)=\psi(t)=1_{G}, \psi(s)=u, \psi(u)=s$

Now $\psi_{2}=2 \psi-\psi^{2}$, so

$$
\begin{array}{ll}
\psi_{2}(r)=\psi\left(r^{2}\right) \psi^{2}\left(r^{-1}\right)=1_{G} & \psi_{2}(s)=\psi\left(s^{2}\right) \psi^{2}\left(s^{-1}\right)=s \\
\psi_{2}(t)=\psi\left(t^{2}\right) \psi^{2}\left(t^{-1}\right)=1_{G} & \psi_{2}(u)=\psi\left(u^{2}\right) \psi^{2}\left(u^{-1}\right)=u
\end{array}
$$

Thus ker $\psi_{2}=\langle r, t\rangle$ and $\operatorname{FP}\left(\psi_{2}\right)=\langle s, u\rangle$.
It follows that $\left(G, o_{2}\right) \cong\langle r, t\rangle \times\langle s, u\rangle \cong C_{n} \times C_{n} \times C_{2} \times C_{2} \cong C_{2 n}^{2}$.
We get nine nonisomorphic braces $\left(G, \circ_{m}, \circ_{n}\right), 0 \leq m, n \leq 2$, which give one YBE solution when $m=2$ and two solutions otherwise. In total, we get $6 \cdot 2+3=15$ solutions.

Also, we get five HGS in each of the cases
$\operatorname{Gal}(L / K)=D_{n} \times D_{n}, C_{2} \times\left(\left(C_{n} \times C_{n}\right) \rtimes C_{2}\right)$, and $C_{2 n} \times C_{2 n}$: two of type $D_{n} \times D_{n}$, two of type $C_{2} \times\left(\left(C_{n} \times C_{n}\right) \rtimes C_{2}\right)$, and one of type $C_{2 n} \times C_{2 n}$.

Semidirect products of certain cyclic groups

Thanks to Lindsay Childs for pointing these out.

Let $G=G_{h, k, b}=\left\langle s, t: s^{h}=t^{k}=t s t^{-1} s^{-b}=1_{G}\right\rangle$ where $k \mid \phi(h)$ and $b \in \mathbb{Z}_{h}^{\times}$has order k.

We are interested in groups of the form $G_{h, k, b^{n}}$ for some n.

Note that b^{n} may not have order k, but there is a $c \in \mathbb{Z}_{h}^{\times}$of order k with $G_{h, k, c}=G_{h, k, b^{n}}$.

For brevity, write $G_{n}=G_{n, k, b^{n}}$ and assume h, k, b fixed.

$$
G_{n}=\left\langle s, t: s^{h}=t^{k}=t s t^{-1} s^{-b^{n}}=1_{G}\right\rangle
$$

Results we need:

Lemma (Childs, 2020)

We have $G_{n} \cong G_{\operatorname{gcd}(k, n)}$.

Lemma (Childs, 2020)

Assume h is prime. For all n we have

$$
Z\left(G_{n}\right)= \begin{cases}\left\langle\left\langle^{k / \operatorname{gcd}(k, n)}\right\rangle\right. & k \nmid n \\ G & k \mid n\end{cases}
$$

So, $G_{m} \cong G_{n}$ if and only if $\operatorname{gcd}(k, n)=\operatorname{gcd}(k, m)$.

$G_{n}=\left\langle s, t: s^{h}=t^{k}=t s t^{-1} s^{-b^{n}}=1 G\right\rangle$

Let $G=G_{1}$.
Pick $j \in \mathbb{Z}$, and define $\psi: G \rightarrow G$ by $\psi(s)=1_{G}, \psi(t)=t^{1-j}$.
Then $\psi \in \operatorname{Ab}(G)$.
We have, since $\psi_{n}=-(1-\psi)^{n}+1$,

$$
\begin{array}{ll}
(1-\psi)(s)=s & \psi_{n}(s)=\left(-(1-\psi)^{n}(s)\right) s=s^{-1} s=1_{G} \\
(1-\psi)(t)=t^{j} & \psi_{n}(t)=\left(-(1-\psi)^{n}(t)\right) t=t^{-j^{n}} t=t^{1-j^{n}}
\end{array}
$$

Hence,

$$
\begin{aligned}
s \circ_{n} g & =s s^{-1} g s=g s \\
t \circ_{n} t & =t t^{j-1} t t^{1-j}=t^{2} \\
t \circ_{n} s & =t t^{j-1} s t^{1-j}=s^{b^{j^{n}}} t=s^{b^{j^{n}}} \circ_{n} t
\end{aligned}
$$

and so $\left(G, \circ_{n}\right)=G_{j^{n}}=G_{g c d(j n, k)}$.

Some examples. $\psi(s)=1_{G}, \psi(t)=t^{1-j},\left(G, o_{n}\right)=G_{j n}$

- $j=1$. Then ψ is trivial, and all braces are identical (and trivial). We get two HGS: the classical and the canonical nonclassical.
- $h=13, k=4, b=4$. If $j=2$ then the "sequence" of groups is

Since G_{4} is abelian, we have $2 \cdot 6+3=15$ solutions to the YBE. We have constructed 5 HGS in the case $\operatorname{Gal}(L / K)=\left(G, \circ_{m}\right)$ for $0 \leq m \leq 2$: two HGS of type (G, \circ_{0}), two of type (G, \circ_{1}), and one of type (G, \circ_{2}).

Some examples. $\psi(s)=1_{G}, \psi(t)=t^{1-j},\left(G, o_{n}\right)=G_{j n}$

- $h=13, k=12, b=4, j=2$. Similar, except now G_{4} is nonabelian, giving us at least $2 \cdot 9=18$ solutions to the YBE.
In fact, can show that $\circ_{m}=\circ_{n}$ if and only if $m \equiv n(\bmod 2)$ and $m, n \geq 2$.
So $\left\{\left(G, \circ_{m}, \circ_{n}\right): 0 \leq m, n \leq 3\right\}$ includes a complete set of braces.
The total number of solutions to the YBE is $2 \cdot 16=32$ (though between 2 and 12 equivalent since $\left.\left(G, o_{2}\right) \cong\left(G, \circ_{3}\right)\right)$.
- For $\operatorname{Gal}(L / K)=\left(G, \circ_{0}\right)$ we have 2 HGS of type $\left(G, \circ_{0}\right)$, 2 of type (G, \circ_{1}), and either 2 or 4 HGS of type (G, \circ_{2}). Total: 6 or 8.
- For $\operatorname{Gal}(L / K)=\left(G, \circ_{1}\right)$ we have 2 HGS of type $\left(G, \circ_{0}\right)$, 2 of type $\left(G, \circ_{1}\right)$, and either 2 or 4 HGS of type (G, \circ_{2}). Total: 6 or 8.
- For Gal $(L / K)=\left(G, \circ_{2}\right)$ we have 2 or 4 HGS of type $\left(G, \circ_{0}\right)$, 2 or 4 of type (G, o_{1}), and either 4 or 6 HGS of type (G, o_{2}). Total: between 8 and 14.

Issue. Need to determine if $\left(G, \circ_{m}, \circ_{2}\right) \cong\left(G, \circ_{m}, \circ_{3}\right)$.

A special case. $\psi(s)=1_{G}, \psi(t)=t^{1-j},\left(G, o_{n}\right)=G_{j n}$

Suppose k is also prime. Then G is the nonabelian group of order $h k$.

- If $k \mid j$ then $\operatorname{ker} \psi=\langle s\rangle, \operatorname{FP}(\psi)=\langle t\rangle$ and $\left(G, \circ_{1}\right) \cong C_{h} \times C_{k} \cong C_{h k}$. Two distinct groups, 6 solutions to YBE, 2 HGS of type G and 1 of type $C_{h k}$ with $\mathrm{Gal}(L / K)=G$ as well as with $\mathrm{Gal}(L / K)=C_{h k}$.
- If j is picked to be a primitive root modulo k, then by [K -Truman 2020] we get $k-1$ nonisomorphic braces, hence $2(k-1)$ solutions to the YBE, and $2(k-1)$ HGS on L / K with $\operatorname{Gal}(L / K)=G($ all of type $G)$.

These account for all braces (up to isomorphism) of the form ($B, \cdot \cdot, \circ$) with $(B, \cdot) \cong G$, along with the trivial brace on $C_{h k}$.

Special case II. $\psi(s)=1_{G}, \psi(t)=t^{1-j},\left(G, \circ_{n}\right)=G_{j n}$

Let $N \gg 0$, let h be a prime with $h \equiv 1\left(\bmod 2^{N}\right)$, let $k=2^{N}$ and $j=2$.
Then $\left(G, \circ_{n}\right) \cong G_{\operatorname{gcd}\left(2^{n}, 2^{N}\right)} \cong G_{2^{\min \{n, N\}}}$ and $\left(G, \circ_{N}\right)$ is abelian.
The brace block includes $N+1$ pairwise nonisomorphic groups, N of which are nonabelian.

We get

- $2 N(N+1)$ total solutions from $\left(G, \circ_{m}, \circ_{n}\right)$ with $m \neq N$.
- $N+1$ solutions from $\left(G, \circ_{N}, \circ_{n}\right)$.

In total, we have $2 N(N+1)+(N+1)=2 N^{2}+3 N+1$ solutions.
Any extension L / K with $\operatorname{Gal}(L / K)=\left(G, \circ_{n}\right), 0 \leq n \leq N$ has 2 HGS of type (G, \circ_{m}) with $m<N$ and 1 HGS of type $\left(G, \circ_{N}\right)$.
Thus, the number of braces, the number of YBE solutions, and the overall number of HGS produced by our brace blocks is unbounded.

Outline

(9) Introduction

(2) Brace blocks from an abelian map
(3) Hopf-Galois structures on blocks
(4) Brace blocks and solutions to the YBE
(5) Short examples
(6) Longer examples
(7) Open Problems

The isomorphism type of $\left(G, \circ_{n}\right)$.

Generally, it appears to be difficult to know this for $n>0$.
Special cases:

- If ψ is fixed point free then $\left(G, \circ_{n}\right) \cong G$ for all n.
- If $\left|\operatorname{ker} \psi_{n}\right| \cdot\left|\operatorname{FP}\left(\psi_{n}\right)\right|=|G|$ then $\left(G, \circ_{n}\right) \cong \operatorname{ker} \psi_{n} \times \operatorname{FP}\left(\psi_{n}\right)$.

Things we do know:

- $\left(G, \circ_{n}\right)$ contains subgroups isomorphic to $(1-\psi)^{m}(G)$ for all $m<n$.
- $\left(G, \circ_{n}\right)$ contains a subgroup isomorphic to $\operatorname{ker} \psi_{n} \times \operatorname{FP}\left(\psi_{n}\right)$.
- $\left(G, \circ_{n}\right)$ is abelian if and only if $(1-\psi)^{n}(G) \subseteq Z(G, \cdot)$.

Hopf algebra questions

(1) Is there a simple way to understand $H_{n}:=L\left[\left(G, \circ_{n}\right)\right]^{G}$ and/or its action on L ?
We do know that if $h=\sum_{g \in G} a_{g} \eta_{g}^{(n)} \in H_{n}$ then $h \cdot x=\sum_{g \in G} a_{g} g^{-1}(x)$.
So knowing the elements of H_{n} makes the action transparent.
(2) Is there a simple way to understand $H_{m, n}:=L\left[\left(G, \circ_{m}\right)\right]^{\left(G, \circ_{n}\right)}$ (after suitably redefining L)?
(3) Can we determine when $H_{m} \cong H_{n}$ as K-Hopf algebras? Note if ψ is fixed point free then $H_{n} \cong H_{\lambda}$ for all n.
We suspect the converse is true.
(4) Can we determine when $H_{m} \cong H_{n}$ as K-algebras?

Block structural questions

We do not have examples where our construction yields:

- A group $\left(G, o_{n}\right) \cong G$ which can not come from a fixed point free map.
- A block with $\left(G, \circ_{n}\right) \cong\left(G, \circ_{n+1}\right) \nVdash\left(G, \circ_{n+2}\right)$.
- A block with $\left(G, \circ_{n}\right) \not \equiv\left(G, \circ_{n+1}\right)$ but $\left(G, \circ_{n}\right) \cong\left(G, \circ_{m}\right)$ for some $m \geq 2$.

The latter two seem unlikely since, for example, $\operatorname{ker} \psi_{n} \leq \operatorname{ker} \psi_{n+1}$.

Thank you.

