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Abelian maps: a review

Let G = (G, ·) be a (nonabelian) group.

Let L/K be a Galois extension, Galois group G.

An abelian map on G is an endomorphism ψ : G→ G such that
ψ(G) ≤ G is abelian.

Denote by Ab(G) the set of all abelian maps on G.

In 2020 we showed how ψ ∈ Ab(G) could be used to put a Hopf-Galois
structure on L/K , as well as construct a (bi-skew) brace.
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The Hopf-Galois structure: a review

Let ψ ∈ Ab(G).

For g ∈ G define ηg : G→ G by ηg[h] = gψ(g−1)hψ(g).

Note ηg[1G] = g.

Then N := {ηg : g ∈ G} is a regular, G-stable subgroup of Perm(G).

(“G-stable” = “normalized by conjugation by λ(G) ≤ Perm(G)”.)

Explicitly, for k ,g ∈ G we have kηg = ηkgψ(g−1)k−1ψ(g).

So, by Greither-Pareigis, L[N]G is a Hopf algebra which puts a
Hopf-Galois structure on L/K .

The HGS structure is said to be of type N.

Also, ψ1, ψ2 ∈ Ab(G) give the same Hopf-Galois structure if and only if
ψ1(g)ψ2(g−1) ∈ Z (G) for all g ∈ G.
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The commuting Hopf-Galois structure: a review

Recall that if N is a regular, G-stable subgroup, then so is

N ′ := CentPerm(G)(N) = {π ∈ Perm(G) : πη = ηπ for all η ∈ N}.

For ψ ∈ Ab(G) we have N = {ηg : g ∈ G}, ηg[h] = gψ(g−1)hψ(g).

Easy to verify that N ′ = {πg : g ∈ G} with

πg[h] = hψ(h−1)gψ(h).

Thus, ψ gives us two related Hopf-Galois structures (G nonabelian).

“Related”: the actions of H := L[N]G and H ′ := L[N ′]G on L/K
commute with each other [Truman, 2018].
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The brace: a review

Recall a skew left brace (hereafter, brace) is a triple (B, ·, ◦) where
(B, ·) and (B, ◦) are groups (dot group and circle group respectively)
and, for all x , y , z ∈ B,

x ◦ (y · z) = (x ◦ y) · x−1 · (x ◦ z), x · x−1 = 1B.

Turns out x · 1B = x ◦ 1B = x for all x ∈ B.
We will frequently suppress the dot and write xy = x · y .

Proposition (K, 2020)

Let ψ ∈ Ab(G), and define g ◦ h = ηg[h] = gψ(g−1)hψ(g).
Then (G, ·, ◦) is a brace.

Caveat. The “abelian map to brace” relationship here is different from
the usual “regular, G-stable subgroup” to “brace” relationship given by
Byott and Vendramin.
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Opposite braces: a review

Let (B, ·, ◦) be a brace.

Then (B, ·′, ◦) is also a brace, where a ·′ b = b · a.

We call this is opposite brace to the one above. (Developed
independently by K-Truman and Rump.)

Fact. [K-Truman, 2019] If N ≤ Perm(G) is regular and G-stable, and
N ′ = CentPerm(G)N, then their corresponding braces are opposite.
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Yang-Baxter equation: a review

Braces give set-theoretic solutions to the Yang-Baxter equation.

A set-theoretic solution to the YBE is a set B and a function
R : B2 → B2 such that

(R × id)(id× R)(R × id) = (id× R)(R × id)(id× R).

If (B, ·, ◦) is a brace and a is the inverse to a ∈ (G, ◦) then

R(x , y) = (x−1(x ◦ y), x−1(x ◦ y) ◦ x ◦ y), x , y ∈ B

is the corresponding solution.

By considering the opposite brace, we get the additional solution

R′(x , y) = ((x ◦ y)x−1, (x ◦ y)x−1 ◦ x ◦ y), x , y ∈ B,

which is inverse to the one above (in that R′R = RR′ = id).
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Equivalent solutions

Suppose (B1, ·1, ◦1) and (B2, ·2, ◦2) are isomorphic braces, i.e., there is
a bijection ϕ : B1 → B2 which which preserve the dot and circle
operations.

Let R1,R2 be the corresponding YBE solutions.

Then R1 6= R2 in general, however we will say that these two solutions
are equivalent.

Short rationale: B1,B2 each induce vector space solutions to the YBE
r : V ⊗ V → V ⊗ V with analogous twisting property, where
dimV = |B1| = |B2|. Equivalent set-theoretic braces give the same
vector space solution up to a choice of basis.

Fact. If (G, ·, ◦) is a brace, the isomorphic braces with the same circle
group (G, ◦) are of the form (G, ·ϕ, ◦) where ϕ ∈ Aut(G, ◦) and
g ·ϕ h = ϕ(ϕ−1(g) · ϕ−1(h)).
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The solutions of interest to us: a review

Example (abelian map case)
For ψ ∈ Ab(G) we get the brace described previously, which leads to
the solution

R(g,h) =
(
ψ(g−1)hψ(g), ψ(hg−1)h−1ψ(g)gψ(g−1)hψ(gh−1)

)
Using the opposite brace, we get the second solution

R′(g,h) = (gψ(g−1)gψ(g)g−1, ψ(h)gψ(h−1)).

We have seen that ψ1, ψ2 give the same brace (and hence the same
solution) if and only if ψ1(g)ψ2(g−1) ∈ Z (G) for all g ∈ G.

Note that if ψ ∈ Ab(G), then ϕψϕ−1 ∈ Ab(G) for all ϕ ∈ Aut(G), and
their braces are necessarily isomorphic.
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The bi-skew brace: a review

Recall that a brace (B, ·, ◦) is a bi-skew brace if (B, ◦, ·) is also a brace.

In other words, (B, ·, ◦) is a bi-skew brace if any only if

a ◦ (b · c) = (a ◦ b) · a−1 · (a ◦ c)
a · (b ◦ c) = (a · b) ◦ a ◦ (a · c).

Easy to show: for ψ ∈ Ab(G) the resulting brace (G, ·, ◦) is bi-skew.

In fact, (G, ◦, ·) is the Byott-Vendramin brace corresponding to the
regular, G-stable subgroup N = {ηg : g ∈ G}.
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An observation from 2020

If ψ ∈ Ab(G) = Ab(G, ·), then

ψ(g ◦ h) = ψ(g) ◦ ψ(h),

i.e., ψ ∈ Ab(G, ◦).

Thus we could apply the brace construction starting with (G, ◦): if

g ? h = g ◦ ψ(g) ◦ h ◦ ψ(g)

then (G, ◦, ?) is a bi-skew brace.

Repeating this idea would, in theory, create a “bi-skew brace chain”.

However, it turns out (G, ·, ?) is also a bi-skew brace.

So perhaps more is going on here.
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Brace blocks

This is our new construction for 2021.

Definition
A brace block is a set B together with a family of binary operations
{◦n : n ∈ Z≥0} such that (B, ◦m, ◦n) is a brace for all m,n ≥ 0.

Note that each brace in a brace block is necessarily bi-skew.

However, it is useful to simply regard them as (skew left) braces.
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First examples

Example (Trivial brace block)
Let (G, ·) be a group, and let (g ◦n h) = gh for all n. Then each brace is
the trivial brace on G (i.e., the two operations coincide).

Example (Almost trivial brace block)
Let (G, ·) be a group, and let

g ◦n h =

{
gh n even
hg n odd

.

Then (G, ◦m, ◦n) is the trivial brace if m ≡ n (mod 2); otherwise it is the
almost trivial brace.

More interesting examples are coming.
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Some notation

Let (G, ·) be a group. Denote by Map(G) the set of functions G→ G.

For α, β ∈ Map(G),n ∈ Z define

(α+ β)(g) = α(g)β(g)
(αβ)(g) = α(β(g))

αn = α · α · · ·α, α0 = id (n > 0)
(nα)(g) = α(gn)

(α− β) = α+ (−1β)
1 = id

0(g) = 1G.

Then Map(G) is a right near-ring ((Map(G),+) nonabelian, no left
distributive law).
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(α + β)(g) = α(g)β(g), nα(g) = α(gn)

Some facts:

Neither Ab(G) nor End(G) are closed under +.
Both Ab(G) and End(G) are closed under multiplication.
Both Ab(G) and End(G) contain 0, and 1 ∈ End(G).
If ψ ∈ Ab(G) then −ψ ∈ Ab(G).
For ψ ∈ Ab(G) and φ ∈ End(G) we have ψφ ∈ Ab(G).
For ψ ∈ Ab(G), ψn ∈ Ab(G) for all n ≥ 0.
For ψ ∈ Ab(G), kψm + `ψn = `ψn + kψm ∈ Ab(G) for all
k , `,m,n ∈ Z, m,n > 0.
For ψ ∈ Ab(G), α, β ∈ Map(G), ψ(α+ β) = ψα+ ψβ.
For all α, β ∈ Map(G), −(α+ β) = −β − α.
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Near-ring a definition

Let ψ ∈ Ab(G). For each n ≥ 0, define

ψn = −(1− ψ)n + 1.

For example,

ψ0 = −1 + 1 = 0
ψ1 = −(1− ψ) + 1 = (ψ − 1) + 1 = ψ

ψ2 = −(1− ψ)2 + 1 = − ((1− ψ)(1− ψ)) + 1
= − ((1− ψ)− ψ(1− ψ)) + 1

= −
(

1− ψ + ψ2 − ψ
)
+ 1

= 2ψ − ψ2.
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ψn = −(1− ψ)n + 1

Properties, ψ ∈ Ab(G):

1 (Explicit formulation) ψn =
(n

1

)
ψ −

(n
2

)
ψ2 + · · · ±

(n
n

)
ψn, i.e.,

ψn(g) = ψ
(

g(
n
1)
)
ψ2
(

g(
n
2)
)−1
· · ·ψn(g(

n
n))±1.

2 (Recursive formulation) ψn = ψ + ψn−1(1− ψ), i.e.,

ψn(g) = ψ(g)ψn−1(gψ(g−1)).

3 (Compatibility with multiplication) (ψm)n = ψmn.
4 (Abelianness) ψn ∈ Ab(G).
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ψ ∈ Ab(G)⇒ ψn ∈ Ab(G), ψn = ψ + ψn−1(1− ψ)

That ψn ∈ Ab(G) means that we can use ψn to create braces.

Let g ◦n h = gψn(g−1)hψn(g).

Then (G, ·, ◦n) is a brace.

By the recursive formulation of ψn we can show

g ◦n h = ((gψ(g−1) ◦n−1 h))ψ(g), g,h ∈ G.

Note that since ψ0 = 0 and ψ1 = ψ we have (G, ◦0) = (G, ·) and
(G, ◦1) = (G, ◦).
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Main result

Theorem (K, 2021)
Let ψ ∈ Ab(G). Then (G, ◦m, ◦n) is a brace, hence {G, ◦0, ◦1, . . . } is a
brace block.

This can (but won’t) be shown by computation.

Case m = 0 Follows from above.
Case m | n Follows from above using (ψm)n/m ∈ Ab(G, ◦m) since

(ψm)n = ψmn.

Recall
3 (Compatibility with multiplication) (ψm)n = ψmn.
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An abelian group wipes out the block

Suppose (G, ◦n) is abelian.

Then, since ψk (x)ψ`(y) = ψ`(y)ψk (x) for k , ` > 0,

g ◦n+1 h = ((gψ(g−1) ◦n h)ψ(g)

= (h ◦n gψ(g−1))ψ(g)

= hψn(h−1)gψ(g−1)ψn(h)ψ(g)

= hψn(h−1)gψn(h)
= h ◦n g
= g ◦n h.

So (G, ◦m) = (G, ◦n) for all m ≥ n.

Once a brace block creates an abelian group, no new braces are
constructed.

Alan Koch (Agnes Scott College) 22 / 51



Outline

1 Introduction

2 Brace blocks from an abelian map

3 Hopf-Galois structures on blocks

4 Brace blocks and solutions to the YBE

5 Short examples

6 Longer examples

7 Open Problems

Alan Koch (Agnes Scott College) 23 / 51



Hopf-Galois structures

We can describe the regular, G-stable subgroups of Perm(G) arising
from a brace block.

Let ψ ∈ Ab(G). For n ≥ 0 define Nn = {η(n)g , g ∈ G} ⊂ Perm(G) by

η
(n)
g [h] = gψn(g−1)hψn(g), g,h ∈ G.

Then Nn ≤ Perm(G) is regular and G-stable.

Note N0 = λ(G).

In general, Nn 6∼= G, in fact η(n)g η
(n)
h = η

(n)
g◦nh; hence, Nn ∼= (G, ◦n).
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A special case: fixed point free abelian maps

The theory of abelian maps comes from Childs’s 2013 construction of
“fixed point free abelian maps”, i.e., ψ ∈ Ab(G) with ψ(g) = g iff
g = 1G.

Turns out ψn ∈ Ab(G) is fixed point free if and only if ψ is.

If ψ is fixed point free, then Nn ∼= λ(G); in fact L[Nn]
G ∼= Hλ as K -Hopf

algebras, where Hλ is the Hopf algebra giving the “canonical
nonclassical” Hopf-Galois structure.
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More generally

Consider the brace block induced by ψ.

Then we have groups N0,N1, . . . with Nm = (G, ◦m).

Let m ≥ 0, and let Lm/Km be a Galois extension with
Gal(Lm/Km) = Nm.

We then have Hopf-Galois structures on Lm/Km.

Question. For each n ≥ 0, can we explicitly realize Nn ≤ Perm(Nm)?

As before, write Nm = {η(m)
g : g ∈ G}, η(m)

g [h] = gψm(g−1)hψm(g).

Similarly for Nn.
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Nm = {η(m)
g : g ∈ G}, η(m)

g [h] = gψm(g−1)hψm(g)

Let
η
(n)
g [η

(m)
h ] = η

(m)
g◦nh.

This is a regular action, and

λ(η
(m)
k )η

(n)
g λ(η

(m)
k )−1 = η

(n)
kψm(k−1)gψm(k)ψn(g−1)k−1ψn(g)

.

In the special case m = 0 (so N0
∼= G via η(0)g ↔ g) we get

η
(n)
g [η

(0)
h ] = η

(0)
g◦nh ↔ g ◦n h = gψn(g−1)hψn(g) = η

(n)
g [h]

and

λ(η
(0)
k )η

(n)
g λ(η

(0)
k )−1 = η

(n)
kψ0(k−1)gψ0(k)ψn(g−1)k−1ψn(g)

= η
(n)
kgψn(g−1)k−1ψn(g)

as expected.
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A collection of solutions

Recall ψ ∈ Ab(G) gives the brace (G, ·, ◦) and the YBE solution

R(g,h) =
(
ψ(g−1)hψ(g), ψ(hg−1)h−1ψ(g)gψ(g−1)hψ(gh−1)

)
.

Since ψn ∈ Ab(G) we quickly get solutions from the braces (G, ·, ◦n):

R(g,h) =
(
ψn(g−1)hψn(g), ψn(hg−1)h−1ψn(g)gψn(g−1)hψn(gh−1)

)
.

More generally, for (G, ◦m, ◦n) the solution is

R(g,h) = (ψm(g)ψn(g−1)hψn(g)ψm(g−1),

ψm(g)ψn(hg−1)h−1ψn(g)ψm(g−1)gψn(g−1)hψn(gh−1)).
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Twice as many solutions

R(g,h) = (ψm(g)ψn(g−1)hψn(g)ψm(g−1),

ψm(g)ψn(hg−1)h−1ψn(g)ψm(g−1)gψn(g−1)hψn(gh−1))

The above comes from the brace (G, ◦m, ◦n).
However, the opposite brace (G, ◦′m, ◦n) with
g ◦′m h = h ◦m g = hψm(h−1)gψm(h) gives another solution, namely

R′(g,h) = (gψn(g−1)hψn(g)ψm(h−1)g−1ψm(h),

ψn(h)ψm(h−1)gψm(h)ψn(h−1)).

Of course, R = R′ if and only if (G, ◦m) is abelian.
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Not four times as many solutions

Of course, since (B, ◦m, ◦n) is a bi-skew brace we would get four
solutions, one from each of the braces

1 (B, ◦m, ◦n)
2 (B, ◦′m, ◦n)
3 (B, ◦n, ◦m)
4 (B, ◦′n, ◦m).

However, when working with brace blocks we only consider solutions
of type (1) and (2) to prevent double counting.

Alan Koch (Agnes Scott College) 31 / 51



Outline

1 Introduction

2 Brace blocks from an abelian map

3 Hopf-Galois structures on blocks

4 Brace blocks and solutions to the YBE

5 Short examples

6 Longer examples

7 Open Problems

Alan Koch (Agnes Scott College) 32 / 51



Semidirect products

Let G = H o K with K abelian. Define ψ : G→ G by ψ(hk) = k .
Then ψ is abelian, kerψ = H, ψ(G) = K , and (G, ◦) ∼= H × K .
Clearly, ψn(hk) = k = ψ(k) for all hk ∈ G, hence ψn = ψ, n ≥ 1. So,

ψn =

(
n
1

)
ψ−
(

n
2

)
ψ2+· · ·±

(
n
n

)
ψn =

((
n
1

)
−
(

n
2

)
+ · · · ±

(
n
n

))
ψ = ψ.

Thus we have two trivial (nonisomorphic) braces (G, ·, ·) and (G, ◦, ◦),
as well as the braces (G, ·, ◦), (G, ◦, ·) with h1k1 ◦ h2k2 = h1h2k1k2.
We get 8 solutions to the YBE, or 6 if H is abelian; and

2 HGS on a Galois extension, Galois group G of type G, 1 or 2 of
type H × K .
1 or 2 HGS on an extension with Galois group H × K of type
H × K , 2 of type G.
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Dihedral

Let G = Dn = 〈r , s : rn = s2 = rsrs = 1G〉 and let ψ ∈ Ab(G).
Can show that |ψ(g)| = 1,2 for all g, so 2ψ = 0.
Possibilities:

ψ = 0. Then ψn = −(1− ψ)n + 1 = −(1n) + 1 = 0 for all n.
Every brace is trivial, and every Hopf-Galois structure is the
canonical nonclassical one.

ψ 6= 0, fixed point free. By [Childs, 2013], ψ(G) = 〈x〉 for some
x ∈ Dn of order 2.
Since ψ(x) 6= x , ψ(x) = 1G and ψ2 = 0.

So ψn =
(n

1

)
ψ −

(n
2

)
ψ2 + · · · ±

(n
n

)
ψn = nψ =

{
0 2 | n
ψ 2 - n

.

The resulting braces are (G, ·, ·) = (G, ◦, ◦), (G, ·, ◦) ∼= (G, ◦, ·),
giving 4 nonequivalent solutions to the YBE.
Note. (G, ◦, ·) ∼= (G, ·, ◦) via the map 1− ψ : g 7→ gψ(g−1).
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A quick aside: (1− ψ)(g) = gψ(g−1)

Proposition
Let G be a nonabelian group, and suppose ψ ∈ Ab(G) is fixed point
free. Then for all 0 ≤ m ≤ n we have (G, ◦m, ◦n) ∼= (G, ·, ◦n−m).

Sketch. Verify 1−ψ : (G, ◦m, ◦n)→ (G, ◦m−1, ◦n−1) is an isomorphism.

(Easy to see–and well-known–that ψ ∈ Ab(G) is fixed point free if and
only if 1− ψ is a bijection.)

In the Dn example, ◦2 = ◦0 = ·, so

(G, ·, ◦) = (G, ◦0, ◦1) ∼= (G, ◦1, ◦2) = (G, ◦, ·).
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Back to G = 〈r , s〉

Generally, let FP(ψ) be the subgroup of G consisting of fixed points.

FP(ψ) 6= {1G}. By [K, 2020], ψ(G) = {1G, x} = FP(ψ).
Then ψ2(g) = ψ(g) for all g ∈ G, i.e., ψ2 = ψ. Generally, ψn = ψ.
We get four braces: (G, ·, ·), (G, ◦, ◦),(G, ·, ◦), and (G, ◦, ·).
The trivial braces are different from each other since
(G, ◦) ∼= Cn × C2 or Dn/2 × C2 (depending on various factors).

We get either 6 or 8 solutions to the YBE, and:
3 or 4 HGS for Gal(L/K ) = Dn: two of type Dn; and one of type C2n
or two of type Dn/2 × C2.
3 HGS for Gal(L/K ) = C2n, or 4 HGS for Gal(L/K ) = Dn/2 × C2.
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G = Dn × Dn

Let G = 〈r , s : rn = s2 = rsrs = 1G〉 × 〈t ,u : tn = u2 = tutu = 1G〉,
where n ≥ 3 is odd.

Define ψ : G→ G by ψ(r) = ψ(t) = 1G, ψ(s) = u, ψ(u) = s.

Then ψ(G) = 〈s,u〉 ∼= C2 × C2 so ψ ∈ Ab(G).

Since su = ψ(us),

g ◦ (su) = g ◦ ψ(us) = gψ(g−1)ψ(us)ψ(g) = gψ(us) = gsu

and
(su ◦ g) = suψ(su)−1gψ(su) = suusgsu = gsu,

hence su ∈ Z (G, ◦).
Since Z (G, ·) is trivial we get (G, ◦) 6∼= (G, ·).
Also, Z (G, ◦) is not abelian (r ◦ u = ru, u ◦ r = r−1u).

In fact, (G, ◦) ∼= C2 × ((Cn × Cn)o C2) where C2 acts via inverse.
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G = 〈r , s, t ,u〉, ψ(r) = ψ(t) = 1G, ψ(s) = u, ψ(u) = s

Now ψ2 = 2ψ − ψ2, so

ψ2(r) = ψ(r2)ψ2(r−1) = 1G ψ2(s) = ψ(s2)ψ2(s−1) = s

ψ2(t) = ψ(t2)ψ2(t−1) = 1G ψ2(u) = ψ(u2)ψ2(u−1) = u.

Thus kerψ2 = 〈r , t〉 and FP(ψ2) = 〈s,u〉.

It follows that (G, ◦2) ∼= 〈r , t〉 × 〈s,u〉 ∼= Cn × Cn × C2 × C2
∼= C2

2n.

We get nine nonisomorphic braces (G, ◦m, ◦n), 0 ≤ m,n ≤ 2, which
give one YBE solution when m = 2 and two solutions otherwise.

In total, we get 6 · 2 + 3 = 15 solutions.

Also, we get five HGS in each of the cases
Gal(L/K ) = Dn×Dn, C2× ((Cn×Cn)oC2), and C2n×C2n: two of type
Dn ×Dn, two of type C2 × ((Cn ×Cn)o C2), and one of type C2n ×C2n.
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Semidirect products of certain cyclic groups

Thanks to Lindsay Childs for pointing these out.

Let G = Gh,k ,b = 〈s, t : sh = tk = tst−1s−b = 1G〉 where k | φ(h) and
b ∈ Z×h has order k .

We are interested in groups of the form Gh,k ,bn for some n.

Note that bn may not have order k , but there is a c ∈ Z×h of order k with
Gh,k ,c = Gh,k ,bn .

For brevity, write Gn = Gh,k ,bn and assume h, k ,b fixed.
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Gn = 〈s, t : sh = tk = tst−1s−bn
= 1G〉

Results we need:

Lemma (Childs, 2020)
We have Gn ∼= Ggcd(k ,n).

Lemma (Childs, 2020)
Assume h is prime. For all n we have

Z (Gn) =

{
〈tk/gcd(k ,n)〉 k - n
G k | n

.

So, Gm ∼= Gn if and only if gcd(k ,n) = gcd(k ,m).
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Gn = 〈s, t : sh = tk = tst−1s−bn
= 1G〉

Let G = G1.
Pick j ∈ Z, and define ψ : G→ G by ψ(s) = 1G, ψ(t) = t1−j .
Then ψ ∈ Ab(G).
We have, since ψn = −(1− ψ)n + 1,

(1− ψ)(s) = s ψn(s) = (−(1− ψ)n(s)) s = s−1s = 1G

(1− ψ)(t) = t j ψn(t) = (−(1− ψ)n(t)) t = t−jn t = t1−jn

Hence,

s ◦n g = ss−1gs = gs

t ◦n t = tt j−1tt1−j = t2

t ◦n s = tt j−1st1−j = sbjn

t = sbjn ◦n t ,

and so (G, ◦n) = Gjn = Ggcd(jn,k).
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Some examples. ψ(s) = 1G, ψ(t) = t1−j , (G, ◦n) = Gjn

j = 1. Then ψ is trivial, and all braces are identical (and trivial).
We get two HGS: the classical and the canonical nonclassical.

h = 13, k = 4,b = 4. If j = 2 then the “sequence” of groups is

(G, ◦0) −−−−→ (G, ◦1) −−−−→ (G, ◦2) −−−−→ (G, ◦3) −−−−→ · · ·∥∥∥ ∥∥∥ ∥∥∥ ∥∥∥
G1 −−−−→ G2 −−−−→ G4 −−−−→ G4 −−−−→ · · ·

Since G4 is abelian, we have 2 · 6 + 3 = 15 solutions to the YBE.
We have constructed 5 HGS in the case Gal(L/K ) = (G, ◦m) for
0 ≤ m ≤ 2: two HGS of type (G, ◦0), two of type (G, ◦1), and one
of type (G, ◦2).
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Some examples. ψ(s) = 1G, ψ(t) = t1−j , (G, ◦n) = Gjn

h = 13, k = 12,b = 4, j = 2. Similar, except now G4 is nonabelian,
giving us at least 2 · 9 = 18 solutions to the YBE.
In fact, can show that ◦m = ◦n if and only if m ≡ n (mod 2) and
m,n ≥ 2.
So {(G, ◦m, ◦n) : 0 ≤ m,n ≤ 3} includes a complete set of braces.
The total number of solutions to the YBE is 2 · 16 = 32 (though
between 2 and 12 equivalent since (G, ◦2) ∼= (G, ◦3)).

For Gal(L/K ) = (G, ◦0) we have 2 HGS of type (G, ◦0), 2 of type
(G, ◦1), and either 2 or 4 HGS of type (G, ◦2). Total: 6 or 8.
For Gal(L/K ) = (G, ◦1) we have 2 HGS of type (G, ◦0), 2 of type
(G, ◦1), and either 2 or 4 HGS of type (G, ◦2). Total: 6 or 8.
For Gal(L/K ) = (G, ◦2) we have 2 or 4 HGS of type (G, ◦0), 2 or 4
of type (G, ◦1), and either 4 or 6 HGS of type (G, ◦2). Total:
between 8 and 14.

Issue. Need to determine if (G, ◦m, ◦2) ∼= (G, ◦m, ◦3).
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A special case. ψ(s) = 1G, ψ(t) = t1−j , (G, ◦n) = Gjn

Suppose k is also prime. Then G is the nonabelian group of order hk .

If k | j then kerψ = 〈s〉, FP(ψ) = 〈t〉 and (G, ◦1) ∼= Ch × Ck
∼= Chk .

Two distinct groups, 6 solutions to YBE, 2 HGS of type G and 1 of
type Chk with Gal(L/K ) = G as well as with Gal(L/K ) = Chk .
If j is picked to be a primitive root modulo k , then by [K-Truman
2020] we get k − 1 nonisomorphic braces, hence 2(k − 1)
solutions to the YBE, and 2(k − 1) HGS on L/K with
Gal(L/K ) = G (all of type G).

These account for all braces (up to isomorphism) of the form (B, ·, ◦)
with (B, ·) ∼= G, along with the trivial brace on Chk .
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Special case II. ψ(s) = 1G, ψ(t) = t1−j , (G, ◦n) = Gjn

Let N � 0, let h be a prime with h ≡ 1 (mod 2N), let k = 2N and j = 2.

Then (G, ◦n) ∼= Ggcd(2n,2N)
∼= G2min{n,N} and (G, ◦N) is abelian.

The brace block includes N + 1 pairwise nonisomorphic groups, N of
which are nonabelian.

We get
2N(N + 1) total solutions from (G, ◦m, ◦n) with m 6= N.
N + 1 solutions from (G, ◦N , ◦n).

In total, we have 2N(N + 1) + (N + 1) = 2N2 + 3N + 1 solutions.

Any extension L/K with Gal(L/K ) = (G, ◦n), 0 ≤ n ≤ N has 2 HGS of
type (G, ◦m) with m < N and 1 HGS of type (G, ◦N).

Thus, the number of braces, the number of YBE solutions, and the
overall number of HGS produced by our brace blocks is unbounded.
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The isomorphism type of (G, ◦n).

Generally, it appears to be difficult to know this for n > 0.

Special cases:
If ψ is fixed point free then (G, ◦n) ∼= G for all n.
If | kerψn| · |FP(ψn)| = |G| then (G, ◦n) ∼= kerψn × FP(ψn).

Things we do know:
(G, ◦n) contains subgroups isomorphic to (1− ψ)m(G) for all
m < n.
(G, ◦n) contains a subgroup isomorphic to kerψn × FP(ψn).
(G, ◦n) is abelian if and only if (1− ψ)n(G) ⊆ Z (G, ·).
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Hopf algebra questions

1 Is there a simple way to understand Hn := L[(G, ◦n)]G and/or its
action on L?
We do know that if h =

∑
g∈G agη

(n)
g ∈ Hn then

h · x =
∑

g∈G agg−1(x).
So knowing the elements of Hn makes the action transparent.

2 Is there a simple way to understand Hm,n := L[(G, ◦m)](G,◦n) (after
suitably redefining L)?

3 Can we determine when Hm ∼= Hn as K -Hopf algebras?
Note if ψ is fixed point free then Hn ∼= Hλ for all n.
We suspect the converse is true.

4 Can we determine when Hm ∼= Hn as K -algebras?
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Block structural questions

We do not have examples where our construction yields:

A group (G, ◦n) ∼= G which can not come from a fixed point free
map.

A block with (G, ◦n) ∼= (G, ◦n+1) 6∼= (G, ◦n+2).

A block with (G, ◦n) 6∼= (G, ◦n+1) but (G, ◦n) ∼= (G, ◦m) for some
m ≥ 2.

The latter two seem unlikely since, for example, kerψn ≤ kerψn+1.
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Thank you.
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