Abelian maps and brace blocks

Alan Koch

Agnes Scott College

Fauxmaha, May 25, 2021

A D M A A A M M

Alan Koch (Agnes Scott College)

Outline

Introduction

- 2 Brace blocks from an abelian map
- 3 Hopf-Galois structures on blocks
- 4 Brace blocks and solutions to the YBE
- 5 Short examples
- 6 Longer examples
- 7 Open Problems

< 47 ▶

- E 🕨

Let $G = (G, \cdot)$ be a (nonabelian) group.

Let L/K be a Galois extension, Galois group *G*.

An *abelian map* on *G* is an endomorphism $\psi : G \to G$ such that $\psi(G) \leq G$ is abelian.

Denote by Ab(G) the set of all abelian maps on *G*.

In 2020 we showed how $\psi \in Ab(G)$ could be used to put a Hopf-Galois structure on L/K, as well as construct a (bi-skew) brace.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $\psi \in Ab(G)$.

For $g \in G$ define $\eta_g : G \to G$ by $\eta_g[h] = g\psi(g^{-1})h\psi(g)$.

Note $\eta_g[\mathbf{1}_G] = g$.

Then $N := \{\eta_g : g \in G\}$ is a regular, *G*-stable subgroup of Perm(*G*).

("G-stable" = "normalized by conjugation by $\lambda(G) \leq \text{Perm}(G)$ ".)

Explicitly, for $k, g \in G$ we have ${}^k\eta_g = \eta_{kg\psi(g^{-1})k^{-1}\psi(g)}$.

So, by Greither-Pareigis, $L[N]^G$ is a Hopf algebra which puts a Hopf-Galois structure on L/K.

The HGS structure is said to be of *type N*.

Also, $\psi_1, \psi_2 \in Ab(G)$ give the same Hopf-Galois structure if and only if $\psi_1(g)\psi_2(g^{-1}) \in Z(G)$ for all $g \in G$.

The commuting Hopf-Galois structure: a review

Recall that if N is a regular, G-stable subgroup, then so is

$$\mathcal{N}' := \operatorname{Cent}_{\operatorname{Perm}(\mathcal{G})}(\mathcal{N}) = \{ \pi \in \operatorname{Perm}(\mathcal{G}) : \pi \eta = \eta \pi \text{ for all } \eta \in \mathcal{N} \}.$$

For $\psi \in Ab(G)$ we have $N = \{\eta_g : g \in G\}, \ \eta_g[h] = g\psi(g^{-1})h\psi(g)$. Easy to verify that $N' = \{\pi_g : g \in G\}$ with

$$\pi_{g}[h] = h\psi(h^{-1})g\psi(h).$$

Thus, ψ gives us two related Hopf-Galois structures (*G* nonabelian).

"Related": the actions of $H := L[N]^G$ and $H' := L[N']^G$ on L/K commute with each other [Truman, 2018].

The brace: a review

Recall a *skew left brace* (hereafter, *brace*) is a triple (B, \cdot, \circ) where (B, \cdot) and (B, \circ) are groups (*dot group* and *circle group* respectively) and, for all $x, y, z \in B$,

$$x \circ (y \cdot z) = (x \circ y) \cdot x^{-1} \cdot (x \circ z), \ x \cdot x^{-1} = 1_B.$$

Turns out $x \cdot 1_B = x \circ 1_B = x$ for all $x \in B$.

We will frequently suppress the dot and write $xy = x \cdot y$.

Proposition (K, 2020)

Let $\psi \in Ab(G)$, and define $g \circ h = \eta_g[h] = g\psi(g^{-1})h\psi(g)$. Then (G, \cdot, \circ) is a brace.

Caveat. The "abelian map to brace" relationship here is different from the usual "regular, *G*-stable subgroup" to "brace" relationship given by Byott and Vendramin.

・ロト ・ 四ト ・ ヨト ・ ヨト

Let (B, \cdot, \circ) be a brace.

Then (B, \cdot', \circ) is also a brace, where $a \cdot' b = b \cdot a$.

We call this is *opposite brace* to the one above. (Developed independently by K-Truman and Rump.)

Fact. [K-Truman, 2019] If $N \leq \text{Perm}(G)$ is regular and *G*-stable, and $N' = \text{Cent}_{\text{Perm}(G)}N$, then their corresponding braces are opposite.

A (10) A (10) A (10) A

Yang-Baxter equation: a review

Braces give set-theoretic solutions to the Yang-Baxter equation. A set-theoretic solution to the YBE is a set *B* and a function $R: B^2 \rightarrow B^2$ such that

 $(\mathbf{R} \times \mathrm{id})(\mathrm{id} \times \mathbf{R})(\mathbf{R} \times \mathrm{id}) = (\mathrm{id} \times \mathbf{R})(\mathbf{R} \times \mathrm{id})(\mathrm{id} \times \mathbf{R}).$

If (B, \cdot, \circ) is a brace and \overline{a} is the inverse to $a \in (G, \circ)$ then

$$R(x,y) = (x^{-1}(x \circ y), \overline{x^{-1}(x \circ y)} \circ x \circ y), \ x, y \in B$$

is the corresponding solution.

By considering the opposite brace, we get the additional solution

$$R'(x,y)=((x\circ y)x^{-1},\overline{(x\circ y)x^{-1}}\circ x\circ y),\ x,y\in B,$$

which is inverse to the one above (in that R'R = RR' = id).

• • = • • = •

Suppose (B_1, \cdot_1, \circ_1) and (B_2, \cdot_2, \circ_2) are isomorphic braces, i.e., there is a bijection $\varphi : B_1 \to B_2$ which which preserve the dot and circle operations.

Let R_1 , R_2 be the corresponding YBE solutions.

Then $R_1 \neq R_2$ in general, however we will say that these two solutions are *equivalent*.

Short rationale: B_1, B_2 each induce vector space solutions to the YBE $r : V \otimes V \rightarrow V \otimes V$ with analogous twisting property, where dim $V = |B_1| = |B_2|$. Equivalent set-theoretic braces give the same vector space solution up to a choice of basis.

Fact. If (G, \cdot, \circ) is a brace, the isomorphic braces with the same circle group (G, \circ) are of the form $(G, \cdot_{\varphi}, \circ)$ where $\varphi \in \operatorname{Aut}(G, \circ)$ and $g \cdot_{\varphi} h = \varphi(\varphi^{-1}(g) \cdot \varphi^{-1}(h)).$

イロト イヨト イヨト イヨト

The solutions of interest to us: a review

Example (abelian map case)

For $\psi \in Ab(G)$ we get the brace described previously, which leads to the solution

$${oldsymbol R}(g,h)=\left(\psi(g^{-1})h\psi(g),\psi(hg^{-1})h^{-1}\psi(g)g\psi(g^{-1})h\psi(gh^{-1})
ight)$$

Using the opposite brace, we get the second solution

$${\cal R}'(g,h)=(g\psi(g^{-1})g\psi(g)g^{-1},\psi(h)g\psi(h^{-1})).$$

We have seen that ψ_1, ψ_2 give the same brace (and hence the same solution) if and only if $\psi_1(g)\psi_2(g^{-1}) \in Z(G)$ for all $g \in G$.

Note that if $\psi \in Ab(G)$, then $\varphi \psi \varphi^{-1} \in Ab(G)$ for all $\varphi \in Aut(G)$, and their braces are necessarily isomorphic.

• • • • • • • • • • • • •

Recall that a brace (B, \cdot, \circ) is a *bi-skew brace* if (B, \circ, \cdot) is also a brace.

In other words, (B, \cdot, \circ) is a bi-skew brace if any only if

$$a \circ (b \cdot c) = (a \circ b) \cdot a^{-1} \cdot (a \circ c)$$

 $a \cdot (b \circ c) = (a \cdot b) \circ \overline{a} \circ (a \cdot c).$

Easy to show: for $\psi \in Ab(G)$ the resulting brace (G, \cdot, \circ) is bi-skew.

In fact, (G, \circ, \cdot) is the Byott-Vendramin brace corresponding to the regular, *G*-stable subgroup $N = \{\eta_g : g \in G\}$.

An observation from 2020

If $\psi \in \mathsf{Ab}(\mathcal{G}) = \mathsf{Ab}(\mathcal{G}, \cdot)$, then

$$\psi(\boldsymbol{g}\circ\boldsymbol{h})=\psi(\boldsymbol{g})\circ\psi(\boldsymbol{h}),$$

i.e., $\psi \in \mathsf{Ab}(G, \circ)$.

Thus we could apply the brace construction starting with (G, \circ) : if

$$g \star h = g \circ \psi(\overline{g}) \circ h \circ \psi(g)$$

then (G, \circ, \star) is a bi-skew brace.

Repeating this idea would, in theory, create a "bi-skew brace chain".

However, it turns out (G, \cdot, \star) is also a bi-skew brace.

So perhaps more is going on here.

A (10) A (10)

This is our new construction for 2021.

Definition

A *brace block* is a set *B* together with a family of binary operations $\{\circ_n : n \in \mathbb{Z}^{\geq 0}\}$ such that (B, \circ_m, \circ_n) is a brace for all $m, n \geq 0$.

Note that each brace in a brace block is necessarily bi-skew.

However, it is useful to simply regard them as (skew left) braces.

Example (Trivial brace block)

Let (G, \cdot) be a group, and let $(g \circ_n h) = gh$ for all *n*. Then each brace is the trivial brace on *G* (i.e., the two operations coincide).

Example (Almost trivial brace block)

Let (G, \cdot) be a group, and let

$$g \circ_n h = \begin{cases} gh & n ext{ even} \\ hg & n ext{ odd} \end{cases}$$

Then (G, \circ_m, \circ_n) is the trivial brace if $m \equiv n \pmod{2}$; otherwise it is the *almost trivial brace*.

More interesting examples are coming.

Introduction

- 2 Brace blocks from an abelian map
 - 3 Hopf-Galois structures on blocks
 - 4 Brace blocks and solutions to the YBE
- 5 Short examples
- 6 Longer examples
- Open Problems

4 A N

Let (G, \cdot) be a group. Denote by Map(G) the set of functions $G \to G$. For $\alpha, \beta \in Map(G), n \in \mathbb{Z}$ define

$$\begin{aligned} (\alpha + \beta)(g) &= \alpha(g)\beta(g) \\ (\alpha\beta)(g) &= \alpha(\beta(g)) \\ \alpha^n &= \alpha \cdot \alpha \cdots \alpha, \ \alpha^0 &= \mathrm{id} \end{aligned} \qquad (n > 0) \\ (n\alpha)(g) &= \alpha(g^n) \\ (\alpha - \beta) &= \alpha + (-1\beta) \\ 1 &= \mathrm{id} \\ 0(g) &= 1_G. \end{aligned}$$

Then Map(G) is a right near-ring ((Map(G), +) nonabelian, no left distributive law).

$(\alpha + \beta)(g) = \alpha(g)\beta(g), \ n\alpha(g) = \alpha(g^n)$

Some facts:

- Neither Ab(G) nor End(G) are closed under +.
- Both Ab(G) and End(G) are closed under multiplication.
- Both Ab(G) and End(G) contain 0, and $1 \in End(G)$.
- If $\psi \in Ab(G)$ then $-\psi \in Ab(G)$.
- For $\psi \in Ab(G)$ and $\phi \in End(G)$ we have $\psi \phi \in Ab(G)$.
- For $\psi \in Ab(G)$, $\psi^n \in Ab(G)$ for all $n \ge 0$.
- For $\psi \in Ab(G)$, $k\psi^m + \ell\psi^n = \ell\psi^n + k\psi^m \in Ab(G)$ for all $k, \ell, m, n \in \mathbb{Z}, m, n > 0$.
- For $\psi \in Ab(G)$, $\alpha, \beta \in Map(G)$, $\psi(\alpha + \beta) = \psi\alpha + \psi\beta$.
- For all $\alpha, \beta \in Map(G), -(\alpha + \beta) = -\beta \alpha$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Near-ring a definition

Let $\psi \in Ab(G)$. For each $n \ge 0$, define

$$\psi_n = -(1-\psi)^n + 1.$$

For example,

$$\begin{split} \psi_0 &= -1 + 1 = 0\\ \psi_1 &= -(1 - \psi) + 1 = (\psi - 1) + 1 = \psi\\ \psi_2 &= -(1 - \psi)^2 + 1 = -((1 - \psi)(1 - \psi)) + 1\\ &= -((1 - \psi) - \psi(1 - \psi)) + 1\\ &= -(1 - \psi + \psi^2 - \psi) + 1\\ &= 2\psi - \psi^2. \end{split}$$

Properties, $\psi \in Ab(G)$:

- (Explicit formulation) $\psi_n = \binom{n}{1}\psi \binom{n}{2}\psi^2 + \cdots \pm \binom{n}{n}\psi^n$, i.e., $\psi_n(g) = \psi\left(g\binom{n}{1}\right)\psi^2\left(g\binom{n}{2}\right)^{-1}\cdots\psi^n(g\binom{n}{n})^{\pm 1}.$
- (Recursive formulation) $\psi_n = \psi + \psi_{n-1}(1 \psi)$, i.e.,

$$\psi_n(g) = \psi(g)\psi_{n-1}(g\psi(g^{-1})).$$

- (Compatibility with multiplication) $(\psi_m)_n = \psi_{mn}$.
- (Abelianness) $\psi_n \in Ab(G)$.

 $\psi \in \mathsf{Ab}(G) \Rightarrow \psi_n \in \mathsf{Ab}(G), \ \psi_n = \psi + \psi_{n-1}(1-\psi)$

That $\psi_n \in Ab(G)$ means that we can use ψ_n to create braces.

Let $g \circ_n h = g\psi_n(g^{-1})h\psi_n(g)$.

Then (G, \cdot, \circ_n) is a brace.

By the recursive formulation of ψ_n we can show

$$g \circ_n h = ((g\psi(g^{-1}) \circ_{n-1} h))\psi(g), \ g, h \in G.$$

Note that since $\psi_0 = 0$ and $\psi_1 = \psi$ we have $(G, \circ_0) = (G, \cdot)$ and $(G, \circ_1) = (G, \circ)$.

Theorem (K, 2021)

Let $\psi \in Ab(G)$. Then (G, \circ_m, \circ_n) is a brace, hence $\{G, \circ_0, \circ_1, \dots\}$ is a brace block.

This can (but won't) be shown by computation.

Case m = 0 Follows from above. Case $m \mid n$ Follows from above using $(\psi_m)_{n/m} \in Ab(G, \circ_m)$ since $(\psi_m)_n = \psi_{mn}$.

Recall

(Compatibility with multiplication) $(\psi_m)_n = \psi_{mn}$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

An abelian group wipes out the block

Suppose (G, \circ_n) is abelian.

Then, since $\psi_k(x)\psi_\ell(y) = \psi_\ell(y)\psi_k(x)$ for $k, \ell > 0$,

$$g \circ_{n+1} h = ((g\psi(g^{-1}) \circ_n h)\psi(g))$$

= $(h \circ_n g\psi(g^{-1}))\psi(g)$
= $h\psi_n(h^{-1})g\psi(g^{-1})\psi_n(h)\psi(g)$
= $h\psi_n(h^{-1})g\psi_n(h)$
= $h \circ_n g$
= $g \circ_n h.$

So $(G, \circ_m) = (G, \circ_n)$ for all $m \ge n$.

Once a brace block creates an abelian group, no new braces are constructed.

Introduction

- 2 Brace blocks from an abelian map
- 3 Hopf-Galois structures on blocks
 - 4) Brace blocks and solutions to the YBE
- 5 Short examples
- 6 Longer examples
- Open Problems

4 A N

∃ >

We can describe the regular, *G*-stable subgroups of Perm(G) arising from a brace block.

Let $\psi \in Ab(G)$. For $n \ge 0$ define $N_n = \{\eta_g^{(n)}, g \in G\} \subset Perm(G)$ by $\eta_g^{(n)}[h] = g\psi_n(g^{-1})h\psi_n(g), g, h \in G.$

Then $N_n \leq \text{Perm}(G)$ is regular and *G*-stable.

Note $N_0 = \lambda(G)$.

In general, $N_n \ncong G$, in fact $\eta_g^{(n)} \eta_h^{(n)} = \eta_{g \circ_n h}^{(n)}$; hence, $N_n \cong (G, \circ_n)$.

イロト 不得 トイヨト イヨト

The theory of abelian maps comes from Childs's 2013 construction of "fixed point free abelian maps", i.e., $\psi \in Ab(G)$ with $\psi(g) = g$ iff $g = 1_G$.

Turns out $\psi_n \in Ab(G)$ is fixed point free if and only if ψ is.

If ψ is fixed point free, then $N_n \cong \lambda(G)$; in fact $L[N_n]^G \cong H_\lambda$ as *K*-Hopf algebras, where H_λ is the Hopf algebra giving the "canonical nonclassical" Hopf-Galois structure.

イロト イヨト イヨト イヨト

Consider the brace block induced by ψ .

Then we have groups N_0, N_1, \ldots with $N_m = (G, \circ_m)$.

Let $m \ge 0$, and let L_m/K_m be a Galois extension with $Gal(L_m/K_m) = N_m$.

We then have Hopf-Galois structures on L_m/K_m .

Question. For each $n \ge 0$, can we explicitly realize $N_n \le \text{Perm}(N_m)$?

As before, write $N_m = \{\eta_g^{(m)} : g \in G\}, \ \eta_g^{(m)}[h] = g\psi_m(g^{-1})h\psi_m(g).$ Similarly for N_n .

イロト 不得 トイヨト イヨト

$N_m = \{\eta_g^{(m)} : g \in G\}, \ \eta_g^{(m)}[h] = g\psi_m(g^{-1})h\psi_m(g)$ Let

$$\eta_g^{(n)}[\eta_h^{(m)}] = \eta_{g \circ_n h}^{(m)}$$

This is a regular action, and

$$\lambda(\eta_k^{(m)})\eta_g^{(n)}\lambda(\eta_k^{(m)})^{-1} = \eta_{k\psi_m(k^{-1})g\psi_m(k)\psi_n(g^{-1})k^{-1}\psi_n(g)}^{(n)}.$$

In the special case m = 0 (so $N_0 \cong G$ via $\eta_g^{(0)} \leftrightarrow g$) we get

$$\eta_{g}^{(n)}[\eta_{h}^{(0)}] = \eta_{g\circ_{n}h}^{(0)} \leftrightarrow g\circ_{n}h = g\psi_{n}(g^{-1})h\psi_{n}(g) = \eta_{g}^{(n)}[h]$$

and

$$\lambda(\eta_k^{(0)})\eta_g^{(n)}\lambda(\eta_k^{(0)})^{-1} = \eta_{k\psi_0(k^{-1})g\psi_0(k)\psi_n(g^{-1})k^{-1}\psi_n(g)}^{(n)} = \eta_{kg\psi_n(g^{-1})k^{-1}\psi_n(g)}^{(n)}$$

as expected.

Introduction

- 2 Brace blocks from an abelian map
- B) Hopf-Galois structures on blocks

4 Brace blocks and solutions to the YBE

- 5 Short examples
- 6 Longer examples
- 7 Open Problems

4 A N

A collection of solutions

Recall $\psi \in Ab(G)$ gives the brace (G, \cdot, \circ) and the YBE solution $R(g, h) = \left(\psi(g^{-1})h\psi(g), \psi(hg^{-1})h^{-1}\psi(g)g\psi(g^{-1})h\psi(gh^{-1})\right).$

Since $\psi_n \in Ab(G)$ we quickly get solutions from the braces (G, \cdot, \circ_n) :

$$R(g,h) = \left(\psi_n(g^{-1})h\psi_n(g),\psi_n(hg^{-1})h^{-1}\psi_n(g)g\psi_n(g^{-1})h\psi_n(gh^{-1})\right)$$

More generally, for (G, \circ_m, \circ_n) the solution is

$$\begin{split} R(g,h) &= (\psi_m(g)\psi_n(g^{-1})h\psi_n(g)\psi_m(g^{-1}), \\ &\psi_m(g)\psi_n(hg^{-1})h^{-1}\psi_n(g)\psi_m(g^{-1})g\psi_n(g^{-1})h\psi_n(gh^{-1})). \end{split}$$

$$R(g,h) = (\psi_m(g)\psi_n(g^{-1})h\psi_n(g)\psi_m(g^{-1}), \psi_m(g)\psi_n(hg^{-1})h^{-1}\psi_n(g)\psi_m(g^{-1})g\psi_n(g^{-1})h\psi_n(gh^{-1}))$$

The above comes from the brace (G, \circ_m, \circ_n) .

However, the opposite brace (G, \circ'_m, \circ_n) with $g \circ'_m h = h \circ_m g = h \psi_m(h^{-1}) g \psi_m(h)$ gives another solution, namely

$$\begin{aligned} R'(g,h) &= (g\psi_n(g^{-1})h\psi_n(g)\psi_m(h^{-1})g^{-1}\psi_m(h),\\ &\psi_n(h)\psi_m(h^{-1})g\psi_m(h)\psi_n(h^{-1})). \end{aligned}$$

Of course, R = R' if and only if (G, \circ_m) is abelian.

Of course, since (B, \circ_m, \circ_n) is a bi-skew brace we would get *four* solutions, one from each of the braces

However, when working with brace blocks we only consider solutions of type (1) and (2) to prevent double counting.

Introduction

- 2 Brace blocks from an abelian map
- 3 Hopf-Galois structures on blocks
- Brace blocks and solutions to the YBE
- 5 Short examples
- 6 Longer examples
- Open Problems

4 A N

Semidirect products

Let $G = H \rtimes K$ with K abelian. Define $\psi : G \to G$ by $\psi(hk) = k$. Then ψ is abelian, ker $\psi = H$, $\psi(G) = K$, and $(G, \circ) \cong H \times K$. Clearly, $\psi^n(hk) = k = \psi(k)$ for all $hk \in G$, hence $\psi^n = \psi$, $n \ge 1$. So,

$$\psi_n = \binom{n}{1}\psi - \binom{n}{2}\psi^2 + \cdots \pm \binom{n}{n}\psi^n = \left(\binom{n}{1} - \binom{n}{2} + \cdots \pm \binom{n}{n}\right)\psi = \psi.$$

Thus we have two trivial (nonisomorphic) braces (G, \cdot, \cdot) and (G, \circ, \circ) , as well as the braces (G, \cdot, \circ) , (G, \circ, \cdot) with $h_1k_1 \circ h_2k_2 = h_1h_2k_1k_2$. We get 8 solutions to the YBE, or 6 if *H* is abelian; and

 2 HGS on a Galois extension, Galois group G of type G, 1 or 2 of type H × K.

 1 or 2 HGS on an extension with Galois group H × K of type H × K, 2 of type G.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dihedral

Let $G = D_n = \langle r, s : r^n = s^2 = rsrs = 1_G \rangle$ and let $\psi \in Ab(G)$. Can show that $|\psi(g)| = 1, 2$ for all g, so $2\psi = 0$. Possibilities:

- $\psi = 0$. Then $\psi_n = -(1 \psi)^n + 1 = -(1^n) + 1 = 0$ for all *n*. Every brace is trivial, and every Hopf-Galois structure is the canonical nonclassical one.
- $\psi \neq 0$, fixed point free. By [Childs, 2013], $\psi(G) = \langle x \rangle$ for some $x \in D_n$ of order 2. Since $\psi(x) \neq x$, $\psi(x) = 1_G$ and $\psi^2 = 0$. So $\psi_n = \binom{n}{1}\psi - \binom{n}{2}\psi^2 + \dots \pm \binom{n}{n}\psi^n = n\psi = \begin{cases} 0 & 2 \mid n \\ \psi & 2 \nmid n \end{cases}$. The resulting braces are $(G, \cdot, \cdot) = (G, \circ, \circ), (G, \cdot, \circ) \cong (G, \circ, \cdot),$ giving 4 nonequivalent solutions to the YBE. Note. $(G, \circ, \cdot) \cong (G, \cdot, \circ)$ via the map $1 - \psi : g \mapsto g\psi(g^{-1})$.

Proposition

Let G be a nonabelian group, and suppose $\psi \in Ab(G)$ is fixed point free. Then for all $0 \le m \le n$ we have $(G, \circ_m, \circ_n) \cong (G, \cdot, \circ_{n-m})$.

Sketch. Verify $1 - \psi : (G, \circ_m, \circ_n) \to (G, \circ_{m-1}, \circ_{n-1})$ is an isomorphism.

(Easy to see–and well-known–that $\psi \in Ab(G)$ is fixed point free if and only if $1 - \psi$ is a bijection.)

In the D_n example, $\circ_2 = \circ_0 = \cdot$, so

$$(G, \cdot, \circ) = (G, \circ_0, \circ_1) \cong (G, \circ_1, \circ_2) = (G, \circ, \cdot).$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generally, let $FP(\psi)$ be the subgroup of *G* consisting of fixed points.

• FP(ψ) \neq {1_{*G*}}. By [K, 2020], ψ (*G*) = {1_{*G*}, *x*} = FP(ψ). Then $\psi^2(g) = \psi(g)$ for all $g \in G$, i.e., $\psi^2 = \psi$. Generally, $\psi^n = \psi$. We get four braces: (*G*, ·, ·), (*G*, o, o), (*G*, ·, o), and (*G*, o, ·). The trivial braces are different from each other since (*G*, o) \cong *C*_n × *C*₂ or *D*_{n/2} × *C*₂ (depending on various factors).

We get either 6 or 8 solutions to the YBE, and:

- 3 or 4 HGS for Gal(L/K) = D_n : two of type D_n ; and one of type C_{2n} or two of type $D_{n/2} \times C_2$.
- 3 HGS for $Gal(L/K) = C_{2n}$, or 4 HGS for $Gal(L/K) = D_{n/2} \times C_2$.

イロト 不得 トイヨト イヨト

Introduction

- 2 Brace blocks from an abelian map
- 3 Hopf-Galois structures on blocks
- 4 Brace blocks and solutions to the YBE
- 5 Short examples
- 6 Longer examples
 - Open Problems

< 🗐 🕨

$G = D_n \times D_n$

Let $G = \langle r, s : r^n = s^2 = rsrs = 1_G \rangle \times \langle t, u : t^n = u^2 = tutu = 1_G \rangle$, where $n \ge 3$ is odd. Define $\psi : G \to G$ by $\psi(r) = \psi(t) = 1_G$, $\psi(s) = u$, $\psi(u) = s$. Then $\psi(G) = \langle s, u \rangle \cong C_2 \times C_2$ so $\psi \in Ab(G)$. Since $su = \psi(us)$,

$$g \circ (su) = g \circ \psi(us) = g\psi(g^{-1})\psi(us)\psi(g) = g\psi(us) = gsu$$

and

$$(su \circ g) = su\psi(su)^{-1}g\psi(su) = suusgsu = gsu,$$

hence $su \in Z(G, \circ)$. Since $Z(G, \cdot)$ is trivial we get $(G, \circ) \not\cong (G, \cdot)$. Also, $Z(G, \circ)$ is not abelian $(r \circ u = ru, u \circ r = r^{-1}u)$. In fact, $(G, \circ) \cong C_2 \times ((C_n \times C_n) \rtimes C_2)$ where C_2 acts via inverse.

$G = \langle r, s, t, u \rangle, \ \psi(r) = \psi(t) = \mathbf{1}_G, \ \psi(s) = u, \ \psi(u) = s$

Now $\psi_2 = 2\psi - \psi^2$, so

$$\psi_2(r) = \psi(r^2)\psi^2(r^{-1}) = \mathbf{1}_G \qquad \psi_2(s) = \psi(s^2)\psi^2(s^{-1}) = s$$

$$\psi_2(t) = \psi(t^2)\psi^2(t^{-1}) = \mathbf{1}_G \qquad \psi_2(u) = \psi(u^2)\psi^2(u^{-1}) = u.$$

Thus ker $\psi_2 = \langle r, t \rangle$ and $FP(\psi_2) = \langle s, u \rangle$.

It follows that $(G, \circ_2) \cong \langle r, t \rangle \times \langle s, u \rangle \cong C_n \times C_n \times C_2 \times C_2 \cong C_{2n}^2$.

We get nine nonisomorphic braces (G, \circ_m, \circ_n) , $0 \le m, n \le 2$, which give one YBE solution when m = 2 and two solutions otherwise.

In total, we get $6 \cdot 2 + 3 = 15$ solutions.

Also, we get five HGS in each of the cases $Gal(L/K) = D_n \times D_n, C_2 \times ((C_n \times C_n) \rtimes C_2), \text{ and } C_{2n} \times C_{2n}$: two of type $D_n \times D_n$, two of type $C_2 \times ((C_n \times C_n) \rtimes C_2)$, and one of type $C_{2n} \times C_{2n}$.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Thanks to Lindsay Childs for pointing these out.

Let $G = G_{h,k,b} = \langle s, t : s^h = t^k = tst^{-1}s^{-b} = 1_G \rangle$ where $k \mid \phi(h)$ and $b \in \mathbb{Z}_h^{\times}$ has order k.

We are interested in groups of the form G_{h,k,b^n} for some *n*.

Note that b^n may not have order k, but there is a $c \in \mathbb{Z}_h^{\times}$ of order k with $G_{h,k,c} = G_{h,k,b^n}$.

For brevity, write $G_n = G_{h,k,b^n}$ and assume h, k, b fixed.

$$G_n = \langle \boldsymbol{s}, t : \boldsymbol{s}^h = t^k = t \boldsymbol{s} t^{-1} \boldsymbol{s}^{-b^n} = \mathbf{1}_G \rangle$$

Results we need:

Lemma (Childs, 2020)

We have $G_n \cong G_{gcd(k,n)}$.

Lemma (Childs, 2020)

Assume h is prime. For all n we have

$$Z(G_n) = \begin{cases} \langle t^{k/gcd(k,n)} \rangle & k \nmid n \\ G & k \mid n \end{cases}$$

So, $G_m \cong G_n$ if and only if gcd(k, n) = gcd(k, m).

ヘロン 人間 とくほとく

$$G_n = \langle \boldsymbol{s}, t : \boldsymbol{s}^h = t^k = t \boldsymbol{s} t^{-1} \boldsymbol{s}^{-b^n} = \mathbf{1}_G \rangle$$

Let $G = G_1$. Pick $j \in \mathbb{Z}$, and define $\psi : G \to G$ by $\psi(s) = 1_G$, $\psi(t) = t^{1-j}$. Then $\psi \in Ab(G)$. We have, since $\psi_n = -(1 - \psi)^n + 1$,

$$(1 - \psi)(s) = s \qquad \psi_n(s) = (-(1 - \psi)^n(s)) \, s = s^{-1} s = 1_G$$

$$(1 - \psi)(t) = t^j \qquad \psi_n(t) = (-(1 - \psi)^n(t)) \, t = t^{-j^n} t = t^{1-j^n}$$

Hence,

$$s \circ_n g = ss^{-1}gs = gs$$

$$t \circ_n t = tt^{j-1}tt^{1-j} = t^2$$

$$t \circ_n s = tt^{j-1}st^{1-j} = s^{b^{j^n}}t = s^{b^{j^n}} \circ_n t,$$

and so $(G, \circ_n) = G_{j^n} = G_{gcd(j^n,k)}$.

Some examples. $\psi(s) = \mathbf{1}_{G}, \ \psi(t) = t^{1-j}, \ (G, \circ_n) = G_{j^n}$

- *j* = 1. Then ψ is trivial, and all braces are identical (and trivial).
 We get two HGS: the classical and the canonical nonclassical.
- h = 13, k = 4, b = 4. If j = 2 then the "sequence" of groups is

Since G_4 is abelian, we have $2 \cdot 6 + 3 = 15$ solutions to the YBE. We have constructed 5 HGS in the case $Gal(L/K) = (G, \circ_m)$ for $0 \le m \le 2$: two HGS of type (G, \circ_0) , two of type (G, \circ_1) , and one of type (G, \circ_2) .

Some examples. $\psi(s) = 1_G$, $\psi(t) = t^{1-j}$, $(G, \circ_n) = G_{j^n}$

- *h* = 13, *k* = 12, *b* = 4, *j* = 2. Similar, except now *G*₄ is nonabelian, giving us at least 2 ⋅ 9 = 18 solutions to the YBE. In fact, can show that ∘_m = ∘_n if and only if *m* ≡ *n* (mod 2) and *m*, *n* ≥ 2. So {(*G*, ∘_m, ∘_n) : 0 ≤ *m*, *n* ≤ 3} includes a complete set of braces. The total number of solutions to the YBE is 2 ⋅ 16 = 32 (though between 2 and 12 equivalent since (*G*, ∘₂) ≅ (*G*, ∘₃)).
 - For $Gal(L/K) = (G, \circ_0)$ we have 2 HGS of type (G, \circ_0) , 2 of type (G, \circ_1) , and either 2 or 4 HGS of type (G, \circ_2) . Total: 6 or 8.
 - For $Gal(L/K) = (G, \circ_1)$ we have 2 HGS of type (G, \circ_0) , 2 of type (G, \circ_1) , and either 2 or 4 HGS of type (G, \circ_2) . Total: 6 or 8.
 - For Gal(L/K) = (G, ∘₂) we have 2 or 4 HGS of type (G, ∘₀), 2 or 4 of type (G, ∘₁), and either 4 or 6 HGS of type (G, ∘₂). Total: between 8 and 14.

Issue. Need to determine if $(G, \circ_m, \circ_2) \cong (G, \circ_m, \circ_3)$.

イロン イロン イヨン イヨン 二日

Suppose k is also prime. Then G is the nonabelian group of order hk.

- If k | j then ker ψ = ⟨s⟩, FP(ψ) = ⟨t⟩ and (G, ∘₁) ≅ C_h × C_k ≅ C_{hk}. Two distinct groups, 6 solutions to YBE, 2 HGS of type G and 1 of type C_{hk} with Gal(L/K) = G as well as with Gal(L/K) = C_{hk}.
- If *j* is picked to be a primitive root modulo *k*, then by [K-Truman 2020] we get k 1 nonisomorphic braces, hence 2(k 1) solutions to the YBE, and 2(k 1) HGS on L/K with Gal(L/K) = G (all of type *G*).

These account for all braces (up to isomorphism) of the form (B, \cdot, \circ) with $(B, \cdot) \cong G$, along with the trivial brace on C_{hk} .

イロト イヨト イヨト イヨト

Special case II. $\psi(s) = 1_G$, $\psi(t) = t^{1-j}$, $(G, \circ_n) = G_{j^n}$

Let $N \gg 0$, let *h* be a prime with $h \equiv 1 \pmod{2^N}$, let $k = 2^N$ and j = 2. Then $(G, \circ_n) \cong G_{gcd(2^n, 2^N)} \cong G_{2^{min\{n,N\}}}$ and (G, \circ_N) is abelian. The brace block includes N + 1 pairwise popisomorphic groups N of

The brace block includes N + 1 pairwise nonisomorphic groups, N of which are nonabelian.

We get

- 2N(N+1) total solutions from (G, \circ_m, \circ_n) with $m \neq N$.
- N + 1 solutions from (G, \circ_N, \circ_n) .

In total, we have $2N(N+1) + (N+1) = 2N^2 + 3N + 1$ solutions.

Any extension L/K with $Gal(L/K) = (G, \circ_n)$, $0 \le n \le N$ has 2 HGS of type (G, \circ_m) with m < N and 1 HGS of type (G, \circ_N) .

Thus, the number of braces, the number of YBE solutions, and the overall number of HGS produced by our brace blocks is unbounded.

Introduction

- 2 Brace blocks from an abelian map
- 3 Hopf-Galois structures on blocks
- 4 Brace blocks and solutions to the YBE
- 5 Short examples
- 6 Longer examples
- Open Problems

4 A N

Generally, it appears to be difficult to know this for n > 0.

Special cases:

- If ψ is fixed point free then $(G, \circ_n) \cong G$ for all n.
- If $|\ker \psi_n| \cdot |\operatorname{FP}(\psi_n)| = |G|$ then $(G, \circ_n) \cong \ker \psi_n \times \operatorname{FP}(\psi_n)$.

Things we do know:

- (G, ∘_n) contains subgroups isomorphic to (1 − ψ)^m(G) for all m < n.
- (*G*, \circ_n) contains a subgroup isomorphic to ker $\psi_n \times FP(\psi_n)$.
- (G, \circ_n) is abelian if and only if $(1 \psi)^n(G) \subseteq Z(G, \cdot)$.

Hopf algebra questions

- Is there a simple way to understand H_n := L[(G, ∘_n)]^G and/or its action on L?
 We do know that if h = ∑_{g∈G} a_gη_g⁽ⁿ⁾ ∈ H_n then h ⋅ x = ∑_{g∈G} a_gg⁻¹(x).
 So knowing the elements of H_n makes the action transparent.
- Is there a simple way to understand H_{m,n} := L[(G, o_m)]^(G,o_n) (after suitably redefining L)?
- Can we determine when H_m ≅ H_n as K-Hopf algebras? Note if ψ is fixed point free then H_n ≅ H_λ for all n. We suspect the converse is true.
- Can we determine when $H_m \cong H_n$ as *K*-algebras?

(D) (P) (P) (P)

We do not have examples where our construction yields:

- A group (G, ∘_n) ≅ G which can not come from a fixed point free map.
- A block with $(G, \circ_n) \cong (G, \circ_{n+1}) \ncong (G, \circ_{n+2})$.
- A block with (G, ∘_n) ≇ (G, ∘_{n+1}) but (G, ∘_n) ≅ (G, ∘_m) for some m ≥ 2.

The latter two seem unlikely since, for example, ker $\psi_n \leq \ker \psi_{n+1}$.

Thank you.

æ

イロト イヨト イヨト イヨト